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Abstract: This paper considers two different approaches for analysis of discretized non-linear
control laws subject to small computational delays. Emphasis is given to the problem of
robustness analysis for the discretized control. Hsu and Sastry (1987) provided a concept for
which an explicit formulae is derived here and a modification is suggested allowing robust
closed loop analysis in contrast to the initial approach.
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1. INTRODUCTION

Nonlinear sampled data control in application to
continuous-time plants has been a research area of
great interest during recent years (Clarke et al., 1997;
Nešić et al., 1999) since many questions easily an-
alyzed for linear systems still have to be verified
for non-linear control. One approach is to consider
controllers designed as a discrete control law for
a continuous-time system (Nešić et al., 1999). The
opposite approach is to discretize a continuous-time
control law deriving a sampled-data implementation
(Hsu and Sastry, 1987; Clarke et al., 1997; Teel et
al., 1998; Herrmann et al., 2000). This approach is the
‘fast-sampling’-approach. A small enough sampling
time ensures that the sampled-data implementation is
stable. However, many approaches so far have con-
centrated on the issue of existence for this sampling-
time and have not considered the issue of robustness
or delays in the discretized control due to computa-
tional speed. Hsu and Sastry (1987) considered rig-
orously the problem of computational delays for a
class of nonlinear affine systems and non-linear con-
trols. However, Hsu and Sastry (1987) only provided
the concept not a constructive formulae for closed
loop analysis. Furthermore, Hsu and Sastry (1987)
excluded the issue of robustness as strict constraints
of Lipschitz continuity for the drift of the non-linear
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affine system were used for analysis so that classes
of uncertainty and disturbances readily described by
sector or constant bounds were not easily considered.
In contrast, the problem of robustness of discretized
controllers has been investigated by Herrmann et al.
(2000) and Herrmann (2000) considering sector and
constant bounds for uncertainty. Thus, this paper de-
rives the formulae for Hsu and Sastry’s (1987) analysis
concept and also introduces an extension to decrease
conservatism. Further, the concept of robustness anal-
ysis from Herrmann (2000) is extended to Hsu and
Sastry’s (1987) method by suggesting a modification
which allows robust closed loop analysis to be un-
dertaken. This method and Hsu and Sastry’s (1987)
original approach are compared numerically for a
non-linear sliding-mode based control (Herrmann et
al., 1998; Herrmann, 2000) showing that the set of
assumptions for the discretization analysis is of im-
portance.

2. DISCRETIZED, NON-LINEAR CONTROL
WITH VARYING COMPUTATIONAL DELAY

The discretization procedure will be introduced using
a generic example allowing robust stability of the
sampled-data implementation to be investigated. For
simplicity, the conditions raised are global but can be
easily reformulated for local results considering an
invariant set, a suitable vicinity of the origin of the
investigated state space.
Assumption 1: For a system with continuous and
bounded input gain �������
	���� , �������
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��������	��
����������� � ������������ � � �
 ����� � � 	 � � (1)

a control ������������������� exists which stabilizes the
system. Further, the usual conditions of Caratheodory
(1948) are assumed for � �����������
��������� � � ���������!�����������
to ensure a solution ������� to (1) for �"�#��� .
Assumption 2: A Lyapunov function $ �������� exists
for the continuous-time control ( % �  %'&  %'(  %�)+*-, ):.... / $/ � .... ��%�)  �   % �  �  & ��$ �������� ��%'&  �  & 
$1032% � / $/ � � / $/ �14 
5���� ����� � ������� � ������6 �879%'(� �  & (2)

with 2%:0�, defining a set of ultimate boundedness:;=<>@?!A �CB��"� � � �	$ �������� �C2% �EDGFH�D *�,JI (3)

Assumption 3:.. 
����������� � ������� � ����� .. �LK �  �  � K �HM > .. � � ��� � � 7 � � ��� & � .. �NK�O  � � 7 � &  K�O  K �HM > 0�,  K � *N,JI (4)

These assumptions, in particular Assumption 3, per-
mit sector and constant bounded uncertainty and dis-
turbances. They allow calculation of a sampling fre-
quency which implies robust stability of a sampled-
data implementation of ��� . Herrmann et al. (2000)
used these assumptions to prove robust closed loop
stability of a sampled-data implementation. The alter-
native approach is to assume an exponentially stabi-
lizing control to prove the existence of a suitable sam-
pling frequency of the sampled-data implementation:
Assumption 1b: � �������� and � ����� are continuously
differentiable,  ��QP��
Assumption 2b: � � ����� is exponentially stabilizing
Assumption 3b:
 
������� � � 7 
������� & �  �NKQR  � � 7 � &   KQR�0�,.. � � ��� � � 7 � � ��� & � .. �NK�O  � � 7 � &   K�O10�,JI

Assumptions 1b-3b are a subset of the Assumptions
1-3. Thus, Assumptions 1-3 can be derived from 1b-
3b. � ���� , ��� , follows from Assumption 1b/2b which
allows Assumption 3 to be derived from Assumption
2b/3b implying K �HM > � , in (4). Assumption 2 follows
with 2% � , of (2) using Khalil (1992, Theorem 3.12)
from Assumption 1b/2b. The set of assumptions 1b-
3b is the basis for the discretization analysis by Hsu
and Sastry (1987). Since the drift 
��������� is expected in
this case to be Lipschitz, sector and constant bounded
uncertainty as for Assumption 3, is not easily incor-
porated. The permissible class of non-linearities and
uncertain systems is limited. The conditions used for
the sampled-data implementation of ��� are:
Assumption 4: State/output measurements are avail-
able for discretization of ��������� at well defined time
instants ��S for constant sampling time T8*�, :������S@���U�������WV X�Y!X�Z'���S��U[ T �[\� , W]	_^` aJ I I I I
Assumption 5: A discretized control can only be
applied after a delay of bcT S , , �dbcT S PeT , [ 0f, :g �G������S�� bcT S����S ? � � bcT S ? � h � �i�����j�i��kW��[��j�i� � ��������Sl��� I(5)

and , � k\m Zm �on  for known n � %'prq�s � I ,] *tnu*v, for all [ 0w, . Hence, the delays bcT S

of the discretized control are not necessarily iden-
tical for each sampling interval. It is also assumed.. �i�����U�lxr� 7 �����������lxy��� .. �{zJO and thus, the ini-
tial control �i���|�}�lxr� at time instant �|�}�lx is
not based on an actual measured value but a known
bound zJO with respect to the desired controller value�����������lxy��� is known. It can be shown that for such a
sampled-data controlled system a solution ������� exists
in ~ , ��L� for any T"*C, and has no finite escape time
(Herrmann, 2000, Lemma 9.1).

The basis for deriving robust stability of the closed
loop employing the discretized control is a Lyapunov
analysis. Suppose �Q�L����S!� bcT S����S ? � � bcT S ? �_h , then
from (1-2) the Lyapunov analysis gives for $ �������� 02% : � $� � � / $/ � � / $/ �C4 
����������������� � ������������� � ����������� 6� / $/ � � �����'�:��k:��[��� ��� ��	�	� �G� X�Z���� 7 � � �����������_� I (6)

�y79%'(  �������  & � .... / $/ � .... ��K�O� ������� 7 ������S@� yI (7)

Hence, a suitable upper bound for  ������� 7 ����� S@�  is
required to prove robust stability for the discretized
control. In the next Lemma, it is seen that this upper
estimate exists.

Lemma 1. For a system described by Assumptions
1,3-5, there exists 2T�*�, so that:T ��� ,  2T h ��i� ~ ��S�� bcT S����S ? � � bcT S ? �_h �

 ������� 7 ������S@�  �Ub �  �������  � b�& � b (_� S (8)

where b � 0�, , b�&�0�, , b (_� S 0�, are continuous
in T ��� ,  2T h and � � � mr� x ? � b � �=� � � � mr� x ? � b�& �=�� � � mr� x ? � b (_� S � and � � � S ��� � b (_� S ��� , .

A partial proof of this Lemma is given in Section 2.1
while a full proof can be found in Herrmann (2000)
and Herrmann et al. (2000). Employing Lemma 1, it
follows for the Lyapunov analysis (7) for T �-� ,  2T h ,$ �������� 0C2% and a � , ,�PU�8P ] , for � 0 ��x�� bcT x :� $� � �L79%'(  �  &� %�) ��K�O��rb �  �������  & � b�&  �������  � b (_� S  ������� '�

�L7 ��] 7�� � %'(%'& $ ���������� %�) ��K�O b (_� S� % �9� $ ��������
7-�J��%'(�7E%�) ��K�O���b � � b�& � %'&� 2%¡ 9   �  & (9)

The parameter � can be used for a compromise be-
tween performance and stability of the discretized
controller. From Lemma 1 for any arbitrary D *¢, ,
it is possible to choose an [ *�, large enough so that£ S�� b &(_� S %'& & % &) � & K &O��] 7�� � & % &( % � PC2% �ED I
Furthermore, there must be a ¤T¥*e, , so that for anyT �E� ,  ¤T h :����%'(�7�%�) ��K�O���b � � b�& � %'&� 2%¡ 9  0N,JI (10)



This implies robust ultimate bounded stability of the
discretized control with delayed control action for
small enough sampling time T which is summarized
in the following theorem:

Theorem 1. Suppose Assumptions 1-3 are satisfied
and a controller discretization scheme as given with
Assumptions 4-5 is implemented. Then there is a ¤T8*, so that for T�*�, , T � ¤T the discretized control with
a varying controller delay bcT S is ultimately bounded
with respect to

;�<>@?!A (3).

The next section derives an exact formula for b �
based on ideas adopted from Hsu and Sastry (1987).

2.1 The approach of Hsu & Sastry

This section gives an explicit formula for (8) derived
from the approach of Hsu and Sastry (1987). The
non-linear affine system and the control satisfying As-
sumptions 1b-3b are used which also ensure a $ ��������
(6) with % � � , . Hsu and Sastry (1987) additionally
had to assume that
����  , ��� , �� � � , ��� , (11)�i� ~ �lx	��lx�� bcT x h � �"� ,JI (12)

The main idea is to show that for the discretized
control there is for small enough T a scalar b����3*N, :.. ����� � S ? � � � 7 ������Sj� .. �1b���� .. ����� � S ? � � � .. J[ 0�, (13)� � �mr� x ? b���� � ,JI (14)

This result is then used to show the claim of Lemma
1. The proof may be structured into three steps.
Step I: Employing the principle of complete induc-
tion, it can be proved that there is b���� M S for (13-
14), where b���� is replaced by b���� M S . Later it can
be shown that there is b���� M S independent of [ 0�, :	 Step 0: Consider for (1) the interval�i� ~ �lx�� bcT xH�� � h using (12) and Assumption 5:

 ������� 7 �����lxy�  � ......
X�
 ? k\m 
�X�
 
�� s ���� s ��� � s

� X�X�
 ? k\m 
 4 
�� s ���� s ����� � ����� s ����� � �������lx ��� 6 � s ......
�

X�X�
  
�� s ���� s ��� 7 
�� s ������lxy���  � s
� X�X�
  
�� s ������lxy���  � s � X�X�
 ? k\m 
 .. � ����� s ����� � �������lxy��� .. � s

Using Assumption 1, Assumption 3b, (11) and the
Gronwall-Bellman Inequality (Khalil, 1992):

 ������� 7 �����lxr�  � X�X�
 KQR  ��� s � 7 �����lxy�  � s

� X�X�
 KQR  �����lxy�  � s � X�X�
 ? k\m 
��K�O  �����lxy�  � s (15)

��T� m���� � KQR � ��K�O �  �����lxy� 
��T� m������ KQR � ��K�O �!�  �	����� 7 �	���lxy�  �  �	�����  � (16)

For small enough T follows ] 7 T� m���� � KQR � ��K�O � *, and

 ������� 7 �����lxy�  � T� m���� � KQR � ��K�O �  ������� ] 7"T� m���� � KQR � ��K�O � (17)

With the choice of �=� � � , the existence of b���� M x is
shown.	 Assumption i: � � � mr� x ? b���� M S � , .. ����� � S ? � � � 7 ������S@� .. ��b���� M S .. ����� � S ? � � � .. �[ 0�,	 Step i: For ��� ~ ��S ? � � bcT S ? � ���S ? & h , the state �������
satisfies:

 ������� 7 ������S ? � �  � X�X�Z ��� .. � ����� s ����� � ��������S ? � ��� .. � s
� X�X�Z ���  
�� s �������S ? � ���  � s � X�X�Z ���  
�� s ��	������� 7 
�� s �������S ? � ���  � s
� X�Z ��� ? k\m Z ����X�Z ��� .. � ����� s ���'� � � ��������S@��� 7 � � ��������S ? � ����� .. � s (18)

With �|� ~ ��S ? � � bcT S ? � ���S ? & h and the respective
Lipschitz constants it follows

 ������� 7 ������S ? � �  � T� m������ ��K�O � KQR �  ������S ? � � � T� m���� n���K�O  ������Sl� 7 ������S ? � � 
Using Assumption i, for small enough T :

 �	����� 7 �	����S ? � � ��\T  m���� � ��K�O � KQR � n ��K�O�b���� M Sj�  �	����� ] 7=T� m���� � ��K�O � KQR � n���K�Olb���� M S@�
(19)

Thus, b���� M S ? � exists and � � � mr� x ? b���� M S ? � � , for
small enough T .	 Conclusion: Using the principle of complete induc-
tion, b���� M S exists for [ 0�, and small enough T .
Step II: Now the existence of b���� is shown. Note
that Hsu and Sastry (1987) did not provide this partial
result. It is readily seen that b���� M x � b���� M S for all[ 0 , . Thus, it is sufficient to prove that there isb���� M S ��b���� satisfying (13-14) or,\P T� m���� � ��K�O � KQR � n���K�OGb���� �] 7=T� m���� � ��K�O � KQR � n���K�OGb���� � �1b����  (20)� � �mr� x ? b���� � , (21)

for small enough T8*�, . If K k � ��������  m���� � ��K�O � KQR � ,K k � & ������  m���� n���K�O  (20) is satisfied ifT�K k � � � 4 T � K k � � � K k � & � 7 ] 6 b���� � T`K k � & b &��� ��,  (22),�� ] 7=T � K k � � � K k � & ��,�� 4 T � K k � � � K k � & � 7 ]r6 & 7��	T & K k � � K k � & I (23)

The fast-sampling constraints of (23) ensure thatb����e*¢, for (22) exists, where the smallest b����
satisfying (22) and (21) is for K k � & *�,



b���� � ] 7ET � K k � � � K k � & �^ T`K k � &7 � ��] 7"T � K k � � � K k � & ��� &
�	T & K &k � & 7 K k � �K k � & I (24)

Step III: Now b � , b�& and b (_� S (8) are derived. It
follows from (15) a relation similar to (17) for ���~ �lx	�� � � bcT �_h :
 �	����� 7 �	���lxy�  � T ��]`� n �  � � ?�� � m���� � KQR � ��K�O �  �	����� ] 7=T ��]`� n �  � � ?�� � m���� � KQR � ��K�O �

(25)

For the interval �Q� ~ ��S!� bcT S����S ? � � bcT S ? �_h follows
with (18) similar to (19)
 ������� 7 ������S@�  �Ub �  �������   where b�& � b (_� S � , ,

b � � T� m � � ?�� � ��� ����]`� n � � ��K�O � KQR ��� n���K�OGb���� �] 7�T� m � � ?�� � ��� ����]�� n � � ��K�O � KQR �5� n���K�O�b���� � (26)

and the fast-sampling constraint for (25) is necessary] 7�T� m � � ?�� � ��� ����]`� n � � ��K�O � KQR �5� n ��K�O�b���� � *�, (27)

It is seen in (15) and (18) that the Lipschitz continuity
of the drift 
 is explicitly exploited.

Remark 1. The approach of Hsu and Sastry (1987)
can be adapted to derive the result from Lemma 1
so that only Assumptions 1-3 are used instead of
Assumptions 1b-3b and (11-12). Assumptions 1-3 are
sufficient to derive the result from Lemma 1. This can
be readily seen from�i� ~ ��S � bcT S����S ? � � bcT S ? �_h �  ������� 7 ������Sl�  �......

X�X�Z 4 
�� s ���� s ����� � ����� s ����� � ����� s ��� 6 � s
� X�X�Z � ����� s ��� 4 � � ��������Sl��� 7 � � ����� s ����6 � s
� X�Z ? k\m Z�X�Z � ����� s ��� 4 � � ��������S�� � ��� 7 � � ��������Sl��� 6 � s ......
�

X�X�Z � K �  ��� s �  � K �HM > � � s � X�X�Z ��K�O  �	� s � 7 �	����S@�  � s� b�T S ��K�O  �	� ��S � 7 �	����S � � � 
�

X�X�Z � K � � ��K�O �  ��� s � 7 ������Sj�  � s� ��� 7 ��Sj� � K �  �	����Sl�  � K �HM > � � b�T S ��K�O  �	� ��S � 7 �	����S � � �  (28)

This inequality allows b���� M S and b���� to be derived
as in Step I-II of this section. The full derivation of the
expressions for b � , b�& and b (_� S is omitted. However,
the formula for b � isb � � T� m � � ?�� � � � � ?�� ��� � ����]i� n � K � � n���K�O`b���� �] 7�T� m � � ?�� � � � � ?�� ��� � ����]�� n � K � � n���K�O�b ��� � (29),\P ] 7=T� m � � ?�� � � � � ?�� ��� � ����]�� n � K � � n���K�O�b ��� �
where b���� is defined in this case by K k � � �
 m � � � ?	� ��� � K � , K k � & �  m � � � ?	� ��� � n���K�O and the

relations of (22-24). This is in particular useful for the
case when 2% � K �HM > � , for Assumptions 1-3, which
also implies b�& � , (Herrmann, 2000).

The next section introduces a non-linear control law
(Herrmann et al., 1998) which is used to compare the
analysis approaches.

3. A SLIDING-MODE LIKE CONTROL LAW

Linear, uncertain systems are considered�� ��
9�+��c�8��=�����������E� � �  ��� ��� (30)

where the known matrix pair ��
����� is controllable
with � of full rank and �=� I  I � � �f����� 	 ���
models parametric uncertainties and non-linearities
lying in the range space of � . Thus, there is a linear
transformation ��c� �� � such that (30) becomes:�� � ����� � ��
 � &�� �� � � � � � � (31)�� � ����� b ����� � ���� �� b  �� � ��� & �� � � ��� (32)

where � is a stable design matrix and~ b ����������!� � b  ��������� � h � �� �=� I  I � has known finite
bounds 'b �  �#"%$  and Wb   �#"%& . The control
has two parts �i������� ��� '\��� �:� ��� ()' ��� � . The linear
control component ��� ' ��� � is:� � ' ��� � �����  � ����� � ������ 7 � � �& �*�+� � �����5���, 7  .- � � ������� I (33) - is a stable design matrix and / & satisfies /�&  - � -10 /�& � 7.2 �  where 2 � is the ��3 � 33� identity
matrix. Lyapunov functions 4 � ����� appropriate for (31)
and 4�& ����� suitable for (32) are used:4�& ����� ������ ]^ � 0 ����� /�&5� ������ 4 � ����� ������ ]^ � � 0 ����� / � � � ����� (34)

with / � ���6� 0 / � � 7.2 � � � � � . The non-linear control
component� � ()' ������879 : 7<; � � � �����  � ����� �!� � �& /�&=� �����

1/�&>� �����  � / �  ��?`�����  � �� �����  � [ � ~ � 0 � � 0 h,@� ,, [ � ~ � 0 � � 0 h � , (35)

; ��� � �����  � ����� � ������BA � ��C � 1/�&D� �����  �EC (  � � �����  ��FA � * ] (36)C � ������ �HG�I9�<J<KMLk & � ]^	N �PORQTS / � �& b  0 � b  / � �&8U    ,   (37)C ( ������WV & 1/ � 
 � &=/ � �&  � V ^ 1/ � �X�  1/ � �X&  � J<KMLk $ Wb �  (38)

V ������ N �PORQ � / �X& � /ZY N � S
�
� / �X� �� N � S

�
� /�& �'�5A � 7 ]r� 7 / �  / !VN� � ? (39)

achieves robustness by counteracting the matched un-
certainties. For V � � ? (39) to be positive the con-
straint N � S

�
� /�& � * [\ ��� � is imposed. The expression/ �  ��?`�����  � �� �����  � in (35) results in a cone shaped

layer around � � , , which is defined by the rela-
tion 4�& � V & 4 � . It is easily verified from (30), (33-
35) and (36) that Assumptions 1 and 3 are satisfied
justifying the use of Lemma 1. A proof of stability
(Herrmann, 2000) makes it necessary to show that
the Lyapunov function 4 � ����� in (34) is decreasing as
soon as the states have entered the cone shaped layer4�& � V & 4 � which implies that the choice of V has to
be limited by an upper bound (Herrmann, 2000).



3.1 Discretization of the sliding-mode based control

The closed loop system using the discretized control� k()' and � k' of ��� ' (33) and ��� ()' from (35) for (31-
32) can be written for ���¥����S�� bcT S����S ? � � bcT S ? �_h :�� � � ��� � ��
 � &>��� � b � � � ���, .-	� b  �� � ��� & � � ()' ��� � ������ � ��������+� & � ��k()' ��[�� 7 � � ()' ����k' ��[�� 7 � � ' � I
A global non-smooth Lyapunov function follows from
non-smooth analysis theory (Herrmann, 2000):4 ��� � ������ � �������j� � 4 � ��� � ����������� 4�& � � �������W[ �H4�&W0 V & 4 ���� V & �i]r� 4 � ��� � ������� [ �H4�& � V & 4 � (40)

where � * , has to be determined. This non-
smooth function is differentiable for almost all � and� X �4 ��� � � s �� � � s ��� � s � � 4 ��� � ������ � �������:� %'prq�s � I � ap-
plies. This allows the non-smooth Lyapunov function
to be used as $ within the proof for Theorem 1. Fur-
thermore, the relation

�4 � 7 �� 4 , ( �� * , ), holds
for almost all � . This implies exponential stability of
the continuous-time controlled system. For the dis-
cretization analysis, 4 � ��� � �������:��� 4�& � � ������� may be
investigated first. There is �� *�, for large enough� *�, and suitable ,�PU�8P ] :�� � 7 ��] 7�� � N �PORQ

�			
��� / � �X� � 0 / �X� � / �X� � / � �X� / �X� 
 � &=/ � �X&� �/ � �X& 
 0 � & / �X�� � 7 / � �&
� ���� ������
(41)

It can be shown that for almost all �i������S�� bcT S����S ? � �bcT S ? �_h :�4 � ��� � �������5��� �4�& � � ������� ��7 � 4 � ��� � �������5��� 4�& � � ��������� ����� � 0 /�&�� � & � � ()' ��� � �����  � ����� � � ; ��� � ������ � �������A �  � ��� �� x ������� X �"! X � �� ��# � � ������ ������$ 0 �� ��� 0 / � � / � ���^ / � 
 � &^
 0 � & / �^ 7 � 2 ^ � �� # � � ������ ������$
�%� � 0 ����� /�& � & � ��k()' ��[�� 7 � � ()' ��� �  � �5� ��k' ��[�� 7 � � ' ��� �  � ��� I
The uncertainty with upper bound ; ��� � is compensated
by ��� ()' for 4�&�0 V & 4 � . From Section 3, Lemma 1
applies and the expression (8) can be represented for����'& � 0 � � 0)( 0 implying b�& � , . Using the Lipschitz
constant K�O of the control � � ()' �U� � ' , it follows for4�&=0 V & 4 ��4 � ��� � ���������*� �4�& � � ������� �c7 � 4 � ��� � ���������*� 4�& � � ��������� ��� � 4 � ��� � �������5��� 4�& � � ������� � ^+� 1/ �X& � & �K�OGb (_� S (42)

provided the fast-sampling constraint

� N �PORQ
�	
 �� ��� 0 / � � / � ���^ / � 
 � &^
 0 � & / �^ 7 � 2 ^ � �� ����� ��� �� >-, �  � /�& � & � ��� �>�. � K�O�b � ��,

(43)

can be satisfied for small enough T � ¤T . This parallels
the relation of (10) for b�& � , . It is possible to find V
and 2� *�, small enough so that the second part of the
Lyapunov analysis (40) for 4 & � � ������� � V & 4 � ��� � �������
follows ��� V & �8]r� �4 � �C7 ��� V & �8]r� 2� 4 � I The final part
of the Lyapunov analysis is implied from non-smooth
analysis (Herrmann, 2000):�4 ��� � ������ � ������� �L78��� / � ��  2� � 4 ��� � ������ � �������� � 4 ��� � ������ � ������� � ^+� 1/ �X& � & �K�OGb (_� S I
This implies using � � � S ��� b (_� S � , that the
sampled-data controlled system is asymptotically sta-
ble for small enough sampling time T *¥, . An exam-
ple for the sliding-mode based control will be given
next showing characteristics of the discretization ap-
proaches.

3.2 Example of discretized sliding-mode based controls

The two techniques are now applied to a simple sec-
ond order system. Consider the nonlinear model of
an inverted pendulum, which can be expressed in the
form of (30) with
�� # , ],JI 0 7�,JI ]1$ ��=� # , ]�$ ����32 , ,,JI 0 � sinc�54 � � 7 ]r� ,76 �\
sinc�����j�98 J�� / ������ if � @� ,] if ��� , (44)

where � 0 � ~ 4 � 4 & h . The non-linear controller satis-
fies A � �f] I : and C � � , (37) ( b  � , ). The poles�-�  - �<; � ); � � � � have been chosen to be the
same. The respective Lyapunov matrices / � and /�&
(34) follow from � and  - , which allows

/
and V (39)

to be determined using the constraint:7 N �PORQ 4 / � �c� � 0 / � 6� ��� �Y � 7 ^�V / � 
 � &>/ � �X& V V�V / �X� Vj� ,JI =>0
For the single input, second order systems consid-
ered, this constraint is necessary and sufficient so that�4 � �u79,JI =>0 V ? � V & ( �� 0 � ~ ? � � h ) for any state satis-
fying 4�& � V & 4 � . This ensures comparability of the
control and implies stable performance. The value of� , ,�P¥�3P ] , is set as a trade-off to ,JI 0 . Note that no
uncertainty or non-linearity with non-Lipschitz char-
acter has been introduced for (44) so that the control
and also the uncertainty ~ b � b  h are globally Lip-
schitz and Assumptions 2b-3b are satisfied; Hsu and
Sastry’s (1987) technique is applicable. It has been
found simpler to express K=O , %'( , %�) � , � , KQR and K �
from Assumptions 1-3 and (43) in terms of the original
states ~ 4 � 4 & h 0 instead of �� :

K�O � �
�@ V ^ ; � � ,JI ]GV'�BAAAAA A � C (^ ; � � 7 �&DC � � / � AAAAA � AAAA A � C (^ ; � / AAAA E &� @ AA 7�,JI 0'7 ; & � AA � AAAA A � C (^J� �& � / � AAAA � AAAAA A � C ( � 7 ] Y ^_� / � ; � 7 ]r���^ ; � � 7 �&DC � � / � / AAAAA E & ��
�X 

K � � .....7F , ]7 ; & � 7 A � C (^ / 7 ,JI ^`]HG ^^ ^ ; � � A � C (^ ; � /JI ..... 



KQR � � ^	^ : � � ^ :^ ,  %�) � � �^ ; � � ; & � �U]	 � ��]	
%'( � ]^

@ �!� ; & � �U]r�^ 7 � � & � ; & � �U]r� &
� 7 ��� ]; & � � E I

These values allow the calculation of the sampling
time bounds ¤T for different values of n and ; � , so
that for any T ��¤T the closed loop system is stable.
The value of � from the closed loop max-Lyapunov
function has been adjusted so that the sampling time
is maximal for given n and ; � . The formulas from (26)
for Hsu and Sastry’s (1987) original technique and of
(29) for the modification of Hsu and Sastry’s (1987)
approach are used for numerical evaluation.

The robust approach (29) delivers values for ¤T up
to ]�a�� larger (better) than those for the non-robust
method of Hsu and Sastry (1987) (Figure 1 and 2).
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Fig. 1. Bound �� for two approaches, robust modif.
meth. of Hsu & Sastry (29) (upper surf.), orig.
meth. of Hsu & Sastry (26) (lower surf.)
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Fig. 2. Sampling time bound �� for two approaches

Note that the non-linear control for the inverted pendu-
lum has been designed to counteract the non-linearity
and to achieve sliding-mode based behaviour. Since
the method for analysis of robust control laws has
taken particular account of parametric uncertainty or
non-linearity, the advantage of the extension of the

original method of Hsu and Sastry (1987) to the analy-
sis of robust control problems is recognized in the ex-
ample. The value of �� as a function of � is decreasing
with � which is also expected from the analysis (Fig-
ure 2). Within Herrmann (2000), it has been pointed
out that it is important to compensate for the large
value of the Lipschitz constant; this can be beneficial
for decreasing the bounds for the sampling frequency
for the presented case study and is of interest for future
research.

4. CONCLUSIONS

Approaches for the analysis of discretized control
laws subject to small computational delays have been
compared with respect to the issue of robust closed
loop stability. For Hsu and Sastry’s (1987) original
approach, an explicit formulae for closed loop anal-
ysis is provided. It has been seen that, with a more
general set of assumptions, closed loop analysis of
discretized robust controllers can be readily carried
out complementing ideas of Hsu and Sastry (1987).
It has been verified for a numerical example that Hsu
and Sastry’s (1987) modified approach can improve
results for the discretization of a robust control which
are calculated with Hsu and Sastry’s (1987) original
set of assumptions.
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