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Abstract: The physical parameters of controlled systems (plants) are uncertain and are accompanied
by nonlinearity. The state space equation and the characteristic polynomial of the control system
should, therefore, be expressed by an interval set of parameters. This paper examines the robust
performance evaluation of that type of control system based on the existing area of characteristic
roots (i.e., eigenvalues). In particular, in this paper, a sufficient condition for the roots area which
is enclosed by a specified circle on a complex variable plane is given by applying the classic Sturm’s
theorem (division algorithm) to the four corners of a segment polynomial. The result that is obtained
by finite calculations in regard to the coefficients of the segment polynomial, can be extended to
general interval polynomials with multiple uncertain parameters. Copyright ©c 2002 IFAC
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1. INTRODUCTION

The physical parameters of controlled systems
(plants) are uncertain and accompanied by non-
linearity. The state space equation and the char-
acteristic polynomial of the control system should,
therefore, be expressed by an interval matrix and
an interval (polytopic) polynomial, respectively
(Kharitonov, 1979; Ackermann, 1993; Barmish,
1994; Bhattacharyya, 1994). The robust stability
and the poles location for that type of control
system has been elucidated by many researchers
(Bartlett et al., 1988; Soh et al., 1997). Nonethe-
less, in our previous paper, we tried to apply the
classic Sturm’s theorem to interval polynomials in
regard to the existing area of characteristic roots
in a specified contour on a complex variable plane,
and derived theorems which correspond to weak-
Kharitonov’s theorem based on an assumption for
the uncertain systems(Okuyama et al., 1999).

In this paper, by applying Sturm’s theorem (a di-
vision algorithm) to the four corners of a segment
polynomial, a sufficient condition will be given for
the characteristic roots area which is enclosed by a
specified circle on the complex plane. The concept

of finite calculations based on the division algo-
rithm in regard to the coefficients of the segment
polynomial will be extended to general interval
polynomials with multiple uncertain parameters.
The robust performance of that type of control
system will be evaluated by using the discrimina-
tion method.

2. INTERVAL SYSTEMS
The state space equation of controlled systems
with uncertainty (and nonlinearity) can be ex-
pressed by the interval set parameters as follows:

dx

dt
= (A + ∆̃)x, x ∈ Rn, A, ∆̃ ∈ Rn×n, (1)

∆̃ =
m∑

i=1

q̃iAi, q̃i ∈ [q−i , q+
i ].

If the entries of matrix Ai exist in only the
k-th row (or column) (i.e., Rowj=kAi 6= 0,
Rowj 6=kAi = 0, ∀j ∈ {1, 2, · · · , n}, and k ∈
{1, 2, · · · , n}), the characteristic polynomial can
be written as the following form:
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F̃ (s) =
m∑

i=1

q̃i

(
n∑

`=0

ci,` sn−`

)
, (2)

where ci,` is a real constant coefficient and s
is a complex variable which corresponds to the
eigenvalue of matrix A + ∆̃. Of course, if q̃i is an
element of interval set parameters, the eigenvalue
(i.e., the characteristic root) must be an element of
bounded sets of complex numbers. In other words,
if q̃i is represented by a set of interval parameters,
the eigevalues must be represented as a bounded
area of complex numbers.

Since interval polynomial (2) is not the general-
ized form with respect to the state equation (1),
the characteristic polynomial of Eq. (1) can be
reduced to the above form. When the entries of
matrix Ai exist in two or more rows (columns),
interval polynomial (2) can be obtained by apply-
ing the interval arithmetic for multiplication, i.e.,

[q−i , q+
i ] = [q−j , q+

j ] · [q−k , q+
k ],

q−i = min{q−j q−k , q−j q+
k , q+

j q+
k , q+

j q−k },
q+
i = max{q−j q−k , q−j q+

k , q+
j q+

k , q+
j q−k }.

At any rate, the dynamics of the system will be
dependent on the form of interval polynomial (2).

In this paper, the relationship between the math-
ematical model (2) (i.e.,(1)) and the location of
characteristic roots (in the strict sense, the area
of the roots) is examined. The discrimination of
the roots area based on Eq. (2), however, becomes
a considerably complicated problem. Thus, the
problem based on the concept of a set of segment
polynomials will be analyzed at first.

3. SEGMENT POLYNOMIAL
Let us consider the following segment polynomial
(i.e., a polynomial with only one interval set
coefficient):

F̃ (s) =
m∑

i=1

q̃i

(
n∑

`=0

ci,` sn−`

)
, (3)

q̃h ∈ [q−h , q+
h ], q̃i = qi, i 6= h, h, i = 1, 2, · · · , m.

Here, a` and qi (without a mark) indicate fixed co-
efficients. The segment polynomial can be rewrit-
ten as:

F̃ (s) = F (s, µ) = µF+(s) + (1− µ)F−(s),(4)

for an arbitrary parameter µ ∈ [0, 1]. The extreme
polynomials at the both ends of Eq. (3) are
expressed as:

F+(s) =
m∑

i=1

q̃i

(
n∑

`=0

ci,` sn−`

)
, (5)

q̃h = q+
h , q̃i = qi, i 6= h,

Fig. 1. Sectorial and circular contours and areas.
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F−(s) =
m∑

i=1

q̃i

(
n∑

`=0

ci,` sn−`

)
, (6)

q̃h = q−h , q̃i = qi, i 6= h.

As for segment polynomial (3), when considering
the algebraic equation F̃ (s) = 0, segments of
the characteristic root locus can be drawn on
the s-plane. On the other hand, when considering
mapping F̃ (s) for a contour s ∈ ∂Γ as shown in
Fig. 1, a set of line segments will be drawn on a
complex F -plane.

4. CIRCULAR CONTOUR
In this paper, the following circular contour ∂Γ
(as shown in Fig. 1) is considered:

s = ρejθ + σ0 + jω0. (θ : −π → π). (7)

Here, ρ, (σ0, ω0) and θ are the radius, the center
and the angle of rotation for the specified circle,
respectively.

Any point s on circular contour (7) can also be
written by the following rational function of real
variable α:

s =
u + jvα

1− jα
, (8)

where u = ρ+σ0+jω0 and v = ρ−σ0−jω0. Here,
α can be correspondingly considered as follows:

α = tan(θ/2). (9)

Circular contours (7) and (8) includes the follow-
ing extreme case.

(a) In Eqs. (7) and (8), when we consider

ρ = R, σ0 = −R (or σ0 = R), ω0 = ε

and R →∞, ε → 0, the specified area becomes
a left half (or right half) s-plane (∂Γ3 as shown
in Fig. 1) In this case, a part of the circular
contour approaches the imaginary axis on the
s-plane, provided that variable ω is considered
in a certain limited range −ωc < ω < ωc, where



ωc is a cutoff frequency. Thus, variable α will
become a small number, i.e.,

α =
ω

2R
� 1.

(b) Similarly, when the parameters are chosen as

ρ = R, σ0 = −R, ω0 = R tan φ0, R →∞,

the specified area becomes a problem of a secto-
rial area in the left half s-plane (∂Γ2 as shown
in Fig. 1).

As mentioned above, since Eqs. (7) and (8) can
include most of the problems, the following shows
the discrimination of the number of roots in a
circular area.

When applying the above transformation (8) to
Eq. (3), the following numerator polynomial for
real variable α can be obtained:

(1−jα)nF̃ (s) =

m∑
i=1

q̃i

(
n∑

`=0

ci,`(u + jvα)n−`(1− jα)`

)
.

(10)

Since Eq. (10) is a polynomial with complex
coefficients, it can be written as the following
form:

Φ̃(jα) = (1 − jα)nF̃ (s) = P̃ (α) + jQ̃(α), (11)

where

P̃ (α) = ã0,0αn + · · ·+ ã0,n−1α + ã0,n, (12)

Q̃(α) = b̃0,0αn + · · ·+ b̃0,n−1α + b̃0,n. (13)

Coefficients in Eqs. (12) and (13) can be calcu-
lated from the expansion of Eq. (10).

5. FOUR CORNER POINTS PROBLEM
By using expression (4), Eq. (11) is rewritten as
follows:

Φ̃(jα) = Φ(jα, µ) = (1 − jα)n(µF+(s) + (1− µ)F−(s))

= (µP+(α) + (1 − µ)P−(α)) + j(µQ+(α) + (1− µ)Q−(α)),

µ ∈ [0, 1] (14)

The real and imaginary parts of Eq. (14) corre-
spond to those of Eq. (11), i.e.,

P̃ (α) = µP+(α) + (1− µ)P−(α),

Q̃(α) = µQ+(α) + (1 − µ)Q−(α).

Here, the extreme polynomials are expressed as
follows:

P+(α) = a+
0,0αn + · · ·+ a+

0,n−1α + a+
0,n,

Q+(α) = b+0,0αn + · · ·+ b+0,n−1α + b+0,n, (15)

P−(α) = a−0,0αn + · · ·+ a−0,n−1α + a−0,n,

Q−(α) = b−0,0αn + · · ·+ b−0,n−1α + b−0,n. (16)

Thus, the following four corner points (vertices)

Fig. 2. Four corner points and rectangle.

(P−, Q−) (P+,Q−)

(P−,Q+) (P+,Q+)

Φ-plane

can be given, and a rectangle together with a line
segment (edge) can be drawn in the Φ-plane as
shown in Fig. 2:

V1 = (P+, Q+), V2 = (P−, Q−),

V3 = (P−, Q+), V4 = (P+, Q−),

where the latter two points are additional ones.
(In these expressions, note that polynomials P ,
Q and coefficients a0,`, b0,` with superscript + do
not always denote larger values than those with
superscript −). Then, the following four pairs of
polynomials can be defined for i = 1, 2, 3, 4:

P (i)(α) = a
(i)
0,0αn + · · ·+ a

(i)
0,n−1α + a

(i)
0,n, (17)

Q(i)(α) = b
(i)
0,0αn + · · ·+ b

(i)
0,n−1α + b

(i)
0,n, , (18)

where

P (1)(α) = P+(α), Q(1)(α) = Q+(α),

P (2)(α) = P−(α), Q(2)(α) = Q−(α),

P (3)(α) = P−(α), Q(3)(α) = Q+(α),

P (4)(α) = P+(α), Q(4)(α) = Q−(α).

As an expression of polynomials with complex
coefficients, the following can be given:

Φ(i)(jα) = P (i)(α) + jQ(i)(α), (i = 1, 2, 3, 4) (19)

(Note that as for the edges in the F -plane, two
additional polynomials with constant coefficients
cannot be determined in general).

As for a polynomial with complex coefficients
(19), the following lemma can be shown by using
Sturm’s theorem.
[Lemma-1] When coefficient ratios

b
(i)
0,0

a
(i)
1,1

,
b
(i)
1,1

a
(i)
2,2

, · · · ,
b
(i)
n−1,n−1

a
(i)
n,n

(20)

are calculated for an extreme polynomial Φ(i)(α)
(i = 1, 2), the number of ratios (20) to be negative
µ is equal to the number of characteristic roots
for the polynomial in the specified circle. In these



Fig. 3. Parallelotope and rectangles.

Φ-plane

ratios (20), a
(i)
q,q, b

(i)
q−1,q−1 (q = 1, 2, · · · , n) are

calculated by using a division algorithm as shown
in APPENDIX.
(Proof) This lemma is a necessary and sufficient
condition in regard to the existing area of char-
acterisitic roots for the fixed polynomial. In the
appendix, the proof will be given systematically
by using Sturm’s theorem. 2

Based on the above premise, the following the-
orem is obtained as to the above four pairs of
polynomials:
[Theorem-1] If the number of ratios (20) to
be negative is not changed for the four corner
polynomials, the dynamic system that is char-
acterized by segment polynomial Eq. (3) has a
robust performance in regard to the invariance of
the number of characteristic roots in the speci-
fied circle. When considering only one root, for
instance, a dominant root, the circle ∂Γ (i.e., disc
Γ) gives a sufficient condition for the characterisic
root area of the dynamic system with an interval
set parameter.
(Proof) This theorem is a sufficient condition
in regard to the existing area of characterisitic
roots for the segment polynomial. The proof is
obvious from the zero exclusion of the Kalitonov-
like rectangle that is composed of the four corner
points (17) and (18). That is, any edge of the
rectangle does not pierce the origin. As a natural
consequence, the line segment in the Φ-plane and
also in the F -plane does not pierce the origin
(Bartlett, 1988). 2

6. MULTIPLE UNCERTAINTIES

Theorem-1 can also be applied to control systems
with multiple uncertainties such as the character-
istic polynomials which are shown in Eq. (2) in
general. When complex variable s is fixed (frozen),
a view of (hyper)polyhedron (a parallelotope) is
drawn on the Φ-plane as shown in Fig 3. As for
polynomials expressed by Eq. (2), the number of
vertices is 2m, and the number of edges becomes

m · 2m−1. Obviously, the number of additional
vertces is given by 2×m · 2m−1. Thus, the num-
ber of total vertices which should be checked for
interval polynomial (2) is given by

2m + 2m · 2m−1 = (m + 1) · 2m. (21)

Based on the above premise, the following theo-
rem is derived as to the above number (21) of the
corner polynomials:
[Theorem-2] If the number of ratios (20) to be
negative is not changed for all the corner poly-
nomials (21), the dynamic system that is char-
acterized by interval polynomial Eq. (2) has a
robust performance in regard to the invariance of
the number of characteristic roots in the speci-
fied circle. When considering only one root, for
instance, a dominant root, the circle ∂Γ (i.e., disc
Γ) gives a sufficient condition for the characterisic
root area of the dynamic system with interval set
parameters.
(Proof) This theorem is a sufficient condition
in regard to the existing area of characterisitic
roots for the interval polynomial. The proof is
obvious from the result in Theorem-1 in which
any edge of the rectangles does not pierce the
origin. Consequently, as mentioned in the proof of
Theorem-1, any edge of the parallelotope (a set of
line segments) in the Φ-plane and in the F -plane
does not pierce the origin. 2

Although the above results (Theorem-1,2) are
only a sufficient condition (i.e., sufficient for edge
theorems), the discrimination method proposed in
this paper will be useful in robust control systems
design(Okuyama et al., 2000).

7. NUMERICAL EXAMPLES
[Example-1] Consider an interval system ex-
pressed by Eq. (1) as:

x =

[
x1

x2

x3

]
, A =

[
0 1 0
0 0 1
−1 −2 −2

]
,

A1 =

[
0 0 0
0 0 0
−1 −2 0

]
, and q̃1 ∈ [−0.2, 0.2].

The characteristic polynomial can be given by a
segment polynomial as follows:

F̃ (s) = s3 + 2s2 + 2s + 1 + [−0.2, 0.2](2s + 1). (22)

When a circle with a center of (−0.5, 0.8j) and
a radius of r = 0.3 was specified as shown in
Fig. 4, the line segments, four corner points and
rectangles are drawn in the Φ-plane as shown in
Fig. 5. As is obvious from the figure, the series
of four corner points (rectangles) well exclude the
origin.

The number of the characteristic roots in the
specified circle becomes µ = 1 for all the cor-
ner polynomials Φ(i)(jα), (i = 1, 2, 3, 4). With



Fig. 4. Circles and segments of root locus for
Example-1.

σ

jω

Fig. 5. Rectangles in the Φ-plane for Example-1.

respect to pairs of polynomials (P +(α), Q+(α)),
(P−(α), Q−(α)), (P−(α), Q+(α)), (P+(α), Q−(α)),
ratios (20) are calculated, e.g.,

b
(1)
0,0

a
(1)
1,1

=
0.544

1.214
,

b
(1)
1,1

a
(1)
2,2

=
−0.760

−0.507
,

b
(1)
2,2

a
(1)
3,3

=
0.093

−1.123
,

b
(3)
0,0

a
(3)
1,1

=
0.304

1.402
,

b
(3)
1,1

a
(3)
2,2

=
0.445

0.211
,

b
(3)
2,2

a
(3)
3,3

=
−3.26

1.68
.

The number of roots in the specified circle did not
change. However, when a circle with a center of
(−0.5, 0.75j) and a radius of r = 0.3 was specified,
µ = 0 appeared in the case of i = 1.
[Example-2] Consider the same system as de-
scribed in Example-1, but there are three interval
set parameters:

x =

[
x1

x2

x3

]
, A =

[
0 1 0
0 0 1

−1 −2 −2

]
,

A1 =

[
0 0 0
0 0 0
−1 0 0

]
, q̃1 ∈ [−0.2, 0.2],

A2 =

[
0 0 0
0 0 0
0 −2 0

]
, q̃2 ∈ [−0.1, 0.1],

Fig. 6. Circles and root areas for Example-2.
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Fig. 7. Rectangles in the Φ-plane for Example-2.

A2 =

[
0 0 0

0 0 0
0 0 −2

]
, q̃3 ∈ [−0.1, 0.1],

F̃ (s) = s3 + 2s2 + 2s + 1 + [−0.1, 0.1]2s2

+ [−0.1, 0.1]2s + [−0.2, 0.2]. (23)

When a circle with a center of (−0.5, 0.85j)
and a radius of r = 0.3 is specified as shown
in Fig. 6, the parallelotopes and rectangles with
(m + 1) · 2m = 32 corners are drawn in the Φ-
plane as shown in Fig. 7. The series of 32 corner
points (sets of rectangles) also excludes the origin
well. The number of roots in the specified circle
did not change. That is, the robust performance
was guaranteed in regard to the existing area of
dominant roots for the interval system.

8. CONCLUSIONS

This paper examined the robust performance eval-
uation of a control system with interval set pa-
rameters. In particular, in this paper, a sufficient
condition for the roots area which is enclosed
by a specified circle on the s-plane was given
by applying Sturm’s theorem to the four corners
of a segment polynomial. The concept of finite
calculations based on the division algorithm in re-
gard to the coefficients of the segment polynomial



was extended to general interval polynomials with
multiple uncertain parameters.

9. APPENDIX

When notations f
(i)
0 (α) = P (i)(α) and f

(i)
1 (α) =

Q(i)(α) (i = 1, 2, 3, 4) are used for the corner
polynomials (17) and (18), the following division
algorithm can be executed (Takagi, 1965):

f
(i)
2κ−2(α) = f

(i)
2κ−1(α)q(i)

2κ−1(α)− f
(i)
2κ (α),

f
(i)
2κ−1(α) = f

(i)
2κ (α)q(i)

2κ (α)− f
(i)
2κ+1(α), (24)

κ = 1, 2, · · · , n.

If f
(i)
0 (α) and f

(i)
1 (α) are of the n-th order for α,

f
(i)
2 (α), f (i)

3 (α), · · · , f (i)
2n are expressed as:

f
(i)
2 (α) = a

(i)
1,1αn−1 + · · ·+ a

(i)
1,n

f
(i)
3 (α) = b

(i)
1,1αn−1 + · · ·+ b

(i)
1,n

· · · (25)

f
(i)
2n−2(α) = a

(i)
n−1,n−1α + a

(i)
n−1,n

f
(i)
2n−1(α) = b

(i)
n−1,n−1α + b

(i)
n−1,n

f
(i)
2n = a

(i)
n,n.

Here, each coefficient can be given by the follow-
ing sequential operations:

a
(i)
1,p = b

(i)
0,p

(
a
(i)
0,0

b
(i)
0,0

)
− a0,p,

b
(i)
1,p = a

(i)
1,p+1

(
b
(i)
0,0

a
(i)
1,1

)
− b0,p,

(p = 1, 2, · · · , n) (26)

· · ·

a
(i)
q,p = b

(i)
q−1,p

(
a
(i)
q−1,q−1

b
(i)
q−1,q−1

)
− a

(i)
q−1,p,

b
(i)
q,p = a

(i)
q,p+1

(
b
(i)
q−1,q−1

a
(i)
q,q

)
− b

(i)
q−1,p,

(p = q, · · · , n)

· · ·

a
(i)
n,n = b

(i)
n−1,n

(
a
(i)
n−1,n−1

b
(i)
n−1,n−1

)
− a

(i)
n−1,n,

(a
(i)
q,n+1 = 0).

Thus, argument change 2µπ for polynomial F̃ (s)
becomes (2µ − n)π for ˜Φ̃(α) by adding change
−nπ in the argument of (1−jα)n. When P (i)/Q(i)

(or −Q(i)/P (i)) is considered, the number of sign
changes which cross zero for α : −∞ → +∞ is
n− 2µ.

If the number of sign changes which cross the zero
of f

(i)
0 (α)/f

(i)
1 (α) for α : α1 → α2 is expressed as

N (i)(α1, α2) and the number of sign changes of

sequence f
(i)
0 (α), f

(i)
1 (α), · · · , f

(i)
2n is expressed

as V (i)(α), the following relationship is obtained:

N (i)(α1, α2) = V (i)(α1)− V (i)(α2). (27)

Since the condition is N (i)(−∞, +∞) = n− 2µ,

V (i)(−∞)− V (i)(+∞) = n− 2µ (28)

is obtainable. The condition of Eq. (28) corre-
sponds to observing whether the following ratios
are negative or not (The details were described in
(Okuyama et al., 2001)):

lim
α→+∞

f
(i)
1 (α)

|α|f (i)
2 (α)

, · · · , lim
α→+∞

f
(i)
2n−1(α)

|α|f (i)
2n (α)

.

Suppose that the number of negative ratios is N
and the number of positive ratios is P . Thus,
P − N = n − 2µ can be obtained from Eq. (28).
Since P + N = n, N = µ is given.
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