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Abstract: In order to circumvent difficulties associated with synthesising anti-windup com-
pensators for systems containing exponentially unstable modes, we propose an alternative
strategy for such systems. By elaborating on some recent results, we cast the anti-windup
problem as a problem of stabilising a specially constructed outer loop, which is “wrapped
around” the nominal system. One of the central ideas to this strategy is the transference
of input constraints to output constraints, which, at least for simple systems, appears to be
feasible. The success of this approach is demonstrated via a simple example.
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1. INTRODUCTION

Some constrained input linear systems are either dif-
ficult, or impossible, to globally stabilise. This is cer-
tainly true of those containing at least one exponen-
tially unstable mode, and even those which contain
poles on the imaginary axis are often problematic.
Hence one is forced to consider local stabilisation.

The problem one is then faced with is that there are
few strategies available which can claim to handle, sat-
isfactorily, local anti-windup synthesis. In fact, there
are really two problems: the literature which purports
to handle such systems is often ad hoc and has no ac-
companying stability guarantees; or else the literature
is not appropriate. For example there are many anti-
windup schemes which concentrate on stable (or glob-
ally asymptotically null controllable) systems, for ex-
ample Miyamoto and Vinnicombe (1996), Crawshaw
and Vinnicombe (2000) Mulder et al. (2001),Grimm
et al. (2001) to name but a few. Conversely, the tech-
niques of (Hanus et al., 1987) or the conventional
high-gain technique may be applied to unstable sys-
tems, but without any guarantee of success.

� Funded by the UK Engineering and Physical Sciences Research
Council
� Corresponding author. Email mct6@le.ac.uk; Tel. +44
(0)116 252 2567

In our opinion one of the few anti-windup schemes
which does tackle local anti-windup synthesis for ex-
ponentially unstable systems is that reported by Teel
(1999). Teel gives a constructive technique for synthe-
sising compensators which solve a local anti-windup
problem and also gives an example where his proposal
works well. However, on the negative side, his con-
struction is quite expensive in terms of compuation,
as the compensator is of order equal to that of the
plant, and also the compensator requires measurement
of the exponentially unstable modes, which may not
always be possible. Another mild criticism is that the
model-based structure imposed might not necessarily
be optimal in any way.

In this paper we expand slightly on some results de-
rived in Turner and Postlethwaite (2001), which re-
port the development of a technique to handle output
constraints in linear systems. The method is similar
to, but more general and rigorous than, override con-
trol systems (Glattfelder and Schaufelberger, 1988).
Essentially one models the constrained output of a
system with a saturation function, as shown in Figure
1. Then one places, in a feedback loop around the
nominal system, a compensator ���� which becomes
active when the difference �� � �� � ������� becomes
non-zero. In many respects this is like anti-windup
compensation, but directed towards output constraints;
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Fig. 1. Anti-windup via output violation compensation

in particular, linear operation is unhindered except if
an output constraint is violated.

The main idea is, instead of tackling the control con-
straints at the plant input directly, to transfer these
constraints to a suitable ouput variable, which we
call ��. Then we assume that violation of a control
constraint is equivalent to violation of an output con-
straint. Hence, if an output violation occurs, the output
violation compensator then becomes active to sup-
press �� below its limit, which in turn, by the pseudo-
linearity, of the system also regulates the control signal
back below its threshold. Of course this can only be
achieved for certain sizes of exogenous inputs and
initial states, but quite often, it seems to work well.

Obviously one is prompted to wonder why it is worth
doing this, as it seems to be tackling the problem in
a somewhat artificial fashion. The answer is that by
tackling the problem at the output, under some very
weak assumptions, one can easily synthesise locally
stabilising anti-windup compensators. The main prob-
lem with many methods, particularly those based on
LMI’s, is that they contain a term ���� � ��� which
must be negative definite for some � � �, where ��

is the A-matrix of the plant. As �� has some expo-
nentially unstable eigenvalues there does not exist a
� � � such that�������� � �, which renders many
of these techniques useless. The advantage of our for-
mulation is that, by tackling the problem at the output
we consider a closed loop �-matrix, which is always
assumed stable and thus we do not encounter any
difficulties with our LMI’s. It is important to remark
that we have not removed the problem completely: it
is still impossible to obtain global stabilisation, but we
have removed a technical difficulty which can hinder
the synthesis procedure. The precise details of this will
become clearer as the paper progresses.

Notation is standard throughout, with �	� �
�
	�	

denoting the Euclidean norm, �	�� denoting the
�� norm of a vector 	���. The induced �� norm

is �
������� � �	
���� ���
�������
����

. The distance is

given by ����	�� � �� ����� �	���. The space of
real rational, �� transfer function matrices is denoted
���� , the subset which are analytic in the closed right-
half complex plane, with supremum on the imaginary
axis is denoted��	.

2. OUTPUT VIOLATION COMPENSATION

We provide a brief overview of the output violation
compensator problem description and a method for
its solution. This is treated more fully in Turner and
Postlethwaite (2001).

2.1 System description

We consider the configuration in Figure 1, where the
plant is described by the state-space equations

���� 	
��
�

�	� � ��	� �������	�

� � ��	� �������	�

�� � ���	� ��������	��

(1)

where 	� 
 �

� is the plant state, � 
 �

� is the
control input, � 
 �
� is the output, which is fed back
to the controller, and � 
 �


� is a disturbance acting
on the plant. �� 
 �� is the output on which limits are
imposed and may often be a subset of the the output
�, viz �� � ���, where �� selects the channels on which
limits are imposed. We make no assumption on the
location of the poles of ����.

We assume that the following stabilising linear con-
troller has been designed

���� 	
�

�	 � �	 ��� ����

� � �	 ��� ����
(2)

where 	 
 �

� is the controller state and � 
 �


�

represents a disturbance on the controller, normally
the reference input. The interconnection of these equa-
tions defines what we call the nominal closed loop sys-
tem, which we assume to be well-defined and stable.
However, the presence of the output violation compen-
sator, ����, inputs two extra signals to the controller,
modifying its representation to

���� 	
�

�	 � �	 ��� ���� � ��
� � �	 ��� ���� � ��

(3)

where � � ���� ����
� 
 �


���. � is the signal
produced by the output violation compensator ����
which is in turn driven by �� � �������, where �������
is the standard saturation nolinearity

������� �

�
����
���������
���������

...
���������

�
			
 (4)

and ��������� � ������������ �������� ����� � ����� �
�� �  
 ��� � � � � �. Note that ����� denotes the
output limit in the ’th channel of ��. We describe
the combination of ���� and this modifed ���� as
�����, which has the following state-space realisation
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where � � ��� ����. A full description of the remain-
der of the matrices is not given, but they are easy to
calculate from the realisations of ���� and����.

From Figure 1 observe that ���� operates on the dif-
ference between �� and �������, which models the
output constraints. So when an output constraint is not
violated �� � ���������� � � and the output violation
compensator is inactive. When �� �� � the output viola-
tion compensator is active and, if designed correctly,
will attempt to regulate �� below its limit. Note that
the deadzone operator is given by the identity minus
the saturation operator, so another way of expressing
�� is �� � ������.

If there is a severe output disturbance, ��, on ��,
the method described here may not be appropriate.
Although in the linear region of the saturation function
the effect of the disturbance on �� will not be noticeable
as,

�� � �� � �� � ������ � ��� � �� � ������� � �

Unfortunately, as soon as ������ � ��� enters its sat-
urated regime, erroneous results will be obtained as
������ �� ����� � ���. One could perhaps overcome
this deficiency with appropriate filtering or prediction,
but we do not discuss this here and for the remainder
of the paper it is assumed that any output disturbance
on �� is negligible.

2.2 Problem formulation

Before discussing the design of ����, it is useful to
define the problem we would like to solve. As �� is a
measure of the deviation of the constrained output � �
from its constraints �������, it is obviously desirable to
keep this small in some appropriate metric. Addition-
ally, � is the signal which dictates the type of alteration
the system undergoes in order to respect the output
constraints. A large � indicates that the original linear
objectives are incompatible with the output constraints
and will be modified quite drastically. Thus it might
be desirable to keep this modifcation small in some
sense, and hence it would be desirable to keep � small
in some metric. With this in mind it would seem ideal
if we could synthesise ���� as

����� � ��� ��
���������

�������
������

�	

����

�����

�

�

�

� ��

�
�

�

� �

������
�

����

�������
������

(6)

for some integer �, although this is a hard (and non-
smooth) optimisation problem, so instead we will be
content to ensure that

�����

�

�

�

� ��

�
�

�

� �

������
�

� � ���� (7)

for some integer � 
 ����� and some suitably small
� � �. We now formally define the problem we seek
to address in the remainder of the paper.

Definition

���� 
 ��	 is said to solve the output violation
compensation problem if the closed loop is well-posed
and if

(1) ��������� � � �� � �, then � � � ��
(assuming zero intial conditions for ����).

(2) ��������� 
 ��, for some integer � 
 �����,
then � 
 ��

where � � �������� ������ � � � � � �������� ������. ���� is
said to solve strongly the output violation compensa-
tion problem if, in addition,

(3) Equation (7) is satisfied for some integer � 

�����, some � � � and some matrices����� �

�.

ÆÆ
Remark 1:

� Condition 1 ensures linear behaviour if � ����
never violates its limits.

� Condition 2 ensures that if ����� exceeds its lim-
its for some finite time, thus exciting ����, then
after ����� falls below its threshold, linear be-
haviour will eventually resume. This is reminis-
cent of the anti-windup literature where the lo-
cal structure of the controller is preserved unless
saturation occurs. This property makes our work
a special case of the general local-global frame-
work introduced in Teel and Kapoor (1997)

� Condition 3 ensures a finite �� gain which
roughly captures the performance of the system
as discussed earlier.

� Note that ���� � � solves the output viola-
tion compensation problem! ���� � � does not,
however, solve the problem strongly. Essentially
the weaker version of the problem is there to
ensure compensators of a certain structure (i.e.
ones which do not restrict local performance)
and ones which guarantee stability (the closed
loop system is stable) are admitted. The stronger
version of the problem concentrates on perfor-
mance.

� Note condition 3 implies condition 2. �

It is easy to prove that there always exists a compen-
sator ���� which strongly solves the output violation
compensation problem (see Turner and Postlethwaite
(2001)).

Although we have taken � to be symmetric, which
implies the saturation function is also symmetric, this
is not strictly necessary. In fact, the upper and lower



limits of the saturation function can be chosen to
be non-symmetric, as this does not alter the sector
to which the saturation function, or the deadzone,
belong. For convenience, we follow convention and
only consider symmetric saturation functions.

2.3 A class of admissible compensators

The work of Turner and Postlethwaite (2001) dis-
cusses this problem more completely - indeed it is
the central theme of that paper. Here we merely give
a certain class of compensators which strongly solve
the output violation compensation problem, and which
can also be used to minimise the �� gain, �, in in-
equality (7). The class of compensators we consider
are those which are static, which seems to be accept-
able in many situations.

Theorem 1. There exists a static compensator � 

�
�
������ which solves strongly the output violation

compensation problem if there exist matrices � � �,
 � ��!�"�� � � � � "��, # 
 ��
������ and a positive
real scalar $ such that the following LMI is satisfied�
��
��

�
� �� ��� ���

�
�� � �

� ��� � ���� �
� �� �� � �

�

� � �	
 � �

� � � ��
��

�
�

� � � � ��
��

�

�
	
 � � (8)

Furthermore a compensator satisfying an �� gain
bound of � � �

�
$ is given by � � # 
�.

Proof: The proof is given in Turner and Postlethwaite
(2001) and is not given here due to space restric-
tions. Essentially, it follows by noting that � � ���,
����� 
 ��������� % � and using a dissipation type
argument to derive an �� gain inequality. This can
then be cast as a nonlinear matrix inequality, which
after using common tricks from the LMI literature, can
be transformed into inequality (8). ��

It is also possible to derive sub-optimal dynamic com-
pensators in a similar way, for which we also refer the
reader to Turner and Postlethwaite (2001). Dynamic
compensators can lead to more appropriate dynamic
responses, particularly in terms of frequency content,
but are more expensive, in terms of computational
requirements, to design and implement.

3. SOLVING A LOCAL ANTI-WINDUP
PROBLEM

In order to pose an anti-windup problem as an output
violation problem, we must transform the input con-
straints into output constraints, as the “anti-windup”
compensator will be �. We consider Figure 2, where
the input into the plant is now given by �� � ������,
which destroys the linearity of �����. However de-
noting the saturation limits as �� 
 �

� and defining
the set

� � �� � ��� � �� (9)
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Fig. 2. Anti-windup via output violation compensation

where ��� denotes componentwise magnitude and� ���
denotes componentwise inequality, we can see that
for all � 
 � , we have ������ � �; in other words
linearity of ����� is maintained for all � 
 � . Now,
if we can translate the set � to the output, that is if we
can determine a set

� � ��� � ���� � ��� (10)

such that �� 
 � � � 
 � and if ���� solves
the output violation compensation problem, we will
know that, for a certain set of intitial conditions 	���
and exogenous inputs �, the system will be stable.
For simplicity we define the anti-windup problem to
be the problem of ensuring that the system in Figure
2 is stable. We now formalise this notion with the
following result.

Proposition 2. Let ���� solve strongly the output vio-
lation compensation problem and be such that � � 
 �
for all ��� 	� 
 � � � , when the saturation element
is replaced by the identity, in Figure 2. Furthermore
let the set � be postively invariant. Then the system in
Figure 2 is locally stable for all ��� 	���� 
 � �� .

Proof: As ���� solves the output violation compensa-
tion problem, we know that the system in Figure 2 is
stable if the saturation element is replaced by the iden-
tity. As � is positively invariant, 	��� 
 � �� � �
if 	��� 
 � . By virtue of ��� 	���� 
 � � � and
positive invariance of � we have that �� 
 � �� � �
and consequently that � 
 � �� � �. Hence for all
��� 	���� 
 � � � the system in Figure 2 is such
that ������ � � and hence the system is stable for all
��� 	���� 
 � �� . ��

Remark 2: Note that the determination of the sets
� and � can vary in difficulty, depending on the
systems in question. In a single input single output
system the determination might be slightly easier as
here � � ����� ��� � �

� and it would be quite easy
to see that ��� corresponds to ���� for a certain ���.
Then it would also be quite easy to determine a set �
as well. However, for multivariable systems, it is not
quite as easy to determine � or � from � . However,
assuming some sort of diagonal dominance and using
some intuition it is conceivable for one to approximate
� and � and these approximations might be good
enough for use in practice. �



Remark 3: One convenient way of determining �
from � would be in the instance that the control signal
was available for measurement. In this case it would
seem that we could simply set ��� � �� ��	� �
�� ��� � % , which would mean that �� � �. In
other words we have transferred the input constraints
directly to the output. However, there is a subtlety
which must not be ignored: Proposition 2 is based on �
never saturating (to ensure linearity of �����), which
means that� must be chosen as a subset of� to ensure
� never saturates. As before, just how much smaller �
would have to be compared to � is not precisely clear,
although this would seem an easier problem to solve
than the general case. �

Remark 4: Unlike Teel (1999), we do not require
measurement of the unstable modes, but, effectively
we require an observability assumption. This mani-
fests itself in the proposition by the assumption that
��� 
 � means that � 
 � . In other words, we require
some indication of � becoming large to be observable
by �� becoming large. �

We think that this connection might be quite useful
in practice, because, particularly where LMI’s are
concerned, the synthesis of anti-windup compensators
for exponentially unstable systems is often infeasible.
Thus solving an output violation problem can be a way
around infeasibility of LMI’s in many anti-windup
problems.

4. AN EXPONENTIALLY UNSTABLE
ANTI-WINDUP EXAMPLE

We consider the following plant having two unstable
eigenvalues at ������ �������:

� �


� �� �
� � �
� �� ����

�
� � �


�
�
�

�
� �� �


�
�
�

�
(11)

� � �� �� ��� � � �� � � (12)

�� � ���� ���� � ������� �� � ��� � � (13)

A 5th order�	 loopshaping controller using shaping
functions ��� � ����

�
� ��� � � was designed for

this plant using the ncfsyn command in the Matlab
$-analysis and sythesis toolbox. This yielded a good
nominal response.

The control limits were then set at ��� � (i.e. � �
���� �� �� ��) and the uncompensated system was
simulated. Figure 3 shows (dotted line) the response
of the system with these control limits; clearly the
response has degraded when compared to the linear
response. A glance at Figure 4 shows why this is
the case: the control signal of the uncompensated
plant has become highly oscillatory in the presence of
saturation.

To compensate for this saturation we use the results of
Section 3 where the input constraints are transferred,
somehow, to the output and hence the control limit
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Fig. 5. Constrained response of exponentially unstable
example

compensation is taken care of using the output viola-
tion compensator. For this example, we assumed that
the control signal was not available for direct measure-
ment. However, the output �� is, in this case, approx-
imately the rate of �, viz �� � �� and it was observed
that a high rate corresponds to a large peak in the
control signal. Therefore it was deemed an appropriate
measurement to use to suppress undesirable control
activity. It was observed that setting the output limits
on �� to about unity (i.e. � � ���� ��) ensured that the



control signal saturated only slightly, which seemed
good enough for demonstration purposes. Theorem 1
was used to sythesise a static output violation com-
pensator using the matrices �� � ������ � �����
%	��. The resulting � was

� �

�
�������

��!�� ��
� �" ��
�������
 ��#�#!
� �����$
� $���"#

�
						

� � � ��## (14)

The solid line in Figure 3 shows the system’s response
using the output violation compensator: clearly it is
better than the uncompensated system and, in fact,
is not far from the system’s nominal linear response.
Figure 4 reveals that the control magnitude is reduced
compared to the nominal linear response, and does not
exhibit the oscillatory response of the uncompensated
control signal. A slight amount of saturation does oc-
cur, but it was thought that this was not excessive,
and it clearly does not compromise stability. Figure 5
shows the response of the constrained output, � �. Us-
ing the output violation compensator, � � is constrained
to lie below unity for most of the time - there is a
small excursion to above unity as �� �� � to drive the
compensator �.

We should emphasize that the anti-windup schemes
of Mulder et al. (2001), Miyamoto and Vinnicombe
(1996) or Grimm et al. (2001) could not be used for
such a system as the plant is exponentially unstable.
Most schemes which offer some sort of stability guar-
antees assume stable plants. There are other schemes
available for anti-windup compensation of unstable
plants, such as Wurmthaler and Hippe (1994), but one
of the few which gives stability guarantees is that of
Teel (1999). Other possibilities are given by Gomes da
Silva and Tarbouriech (2000) but this technique is
not, strictly speaking, anti-windup: it restricts the local
structure of the controller to a specific form. Hence we
think that the results of Section 3 can offer an attrac-
tive, and reasonably intuitive, solution to the problem
of anti-windup for unstable systems, although we do
accept that the choosing of � based on � may not
always be obvious.

5. CONCLUSION

We have suggested tackling the anti-windup problem
by transferring input constraints to the output and then
designing an output violation compensator to account
for any violation of these limits. This allows one to
solve a local anti-windup problem which avoids some
of the technical difficulties associated with many anti-
windup schemes (particularly LMI based methods). A
simple example has shown the effectiveness of this
technique, although we concede that the determination
of � , and hence� , based on � , was fairly easy in this

case. It remains to be seen, and is a topic of future
research, whether the determination of � and � will
be as easy for more complex, multivariable systems.
Some results which may help this research, are those
found in Reinelt (2000), which predict the maximum
amplitude output of a (linear) system under magnitude
and rate bounds on the input.
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