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Abstract: The problem of observer-based fault diagnosis of  a certain class of nonlinear
dynamic systems is studied. To solve this problem, the following approach is suggested:
replacing the initial nonlinear system by certain linear logic-dynamic system, obtaining the
bank of linear logic-dynamic observers, and transforming these observes into the nonlinear
ones. The procedure of the linear logic-dynamic observers synthesis is developed.
Copyright  2002 IFAC

Keywords: fault detection and isolation, nonlinear systems, linear systems, logical
conditions, observers.

1.  INTRODUCTION

There are a lot of papers dealing with the problem of
fault detection and isolation (FDI) in dynamic systems
(see surveys by Frank, 1990; Gertler, 1993; Patton, 1994).
Most of them concern linear systems and far fewer -
nonlinear dynamic systems (Seliger and Prank, 1991;
Shields, 1996; Zhirabok and Shumsky, 1987; Zhirabok,
1997). Last paper is based on mathematical techniques
requiring rather complex analytical transformations
therefore it is difficult to use them in practice.

An interesting approach to the FDI was developed by
Frank and Wunnenberg (1989) for systems described
by the following type of equations

 Hx(t)=y(t)            , u(t))B(y(t),+Fx(t)x =
•

(1)

where x(t) is the n×1 state vector, u(t) the m×1 vector of
control, y(t) the l×1 vector of measured outputs, F, H

known matrices and B known vector function of
appropriate dimensions. The feature of this type of
systems is that the system nonlinearities can be
expressed as a function of the input, u(t), and output,
y(t).

In this paper, we consider more general class of nonlinear
systems described by the equations

. Hx(t)=y(t)

 , )t(E+u(t))B(x(t),)t(u))t(G(+)x(t))t(F()t(x ρ+γγ=
•

(2)

Here G and E are known constant matrices of appropriate
dimensions, γ(t) is a parameter, the term Eρ(t) models
unknown inputs to the actuator and to the dynamic
process and unknown parameters; the evaluation of
v×1 vector function ρ(t) are considered unknown. It is
supposed also that if there are no faults, then  γ(t)

 
= γ

0
;

if a fault occurs, γ(t) becomes an unknown function.
Denote the system (2) with F = F(γ

0
) and G = G(γ

0
) as
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Σ = (F, B, G, H).

The suggested approach to solve the FDI problem for
system (2) includes the following steps.

1. Replacing the initial nonlinear system (2) by certain
linear logic-dynamic (LLD) system containing several
linear subsystems and linear logical conditions.

2. Solving the FDI problem for the LLD system and
obtaining the bank of the LLD observers.

3. Transforming the LLD observers into nonlinear ones.

2. BASIC  RELATIONSHIPS

To perform this approach, consider the. simple case with
single nonlinearly (Coulomb friction) of the form

B(x(t), u(t)) = (G'u(t))sign(Ax(t)) (3)

for some matrices G' and A.

On the first step of our approach, replace the system
Σ = (F, B, G, H) by the LLD system with three linear
subsystems Σ

1
 = (F, 0, G - G', H), Σ

2
 = (F, 0, G, H) and

Σ
3
 = (F, 0, G + G', H) and two linear logical conditions

Ax(t) ≥ 0 and Ax(t) > 0 (see Figure 1). If the condition
Ax(t) < 0 holds, then (in the unfaulty case) model (2)
reduces to

Σ1:   ; Hx(t)=y(t)

, )t(E+u(t))B(x(t),)t(u)G'-(G+Fx(t))t(x ρ+=
•

if Ax(t) = 0, then

Σ2:   ; Hx(t)=y(t)

, )t(E+u(t))B(x(t),)t(uG+Fx(t))t(x ρ+=
•

if Ax(t) > 0, then

Σ3:   . Hx(t)=y(t)

, )t(E+u(t))B(x(t),)t(u)G'(G+Fx(t))t(x ρ++=
•

It is very important, that these models have the same
matrices F and H.

On the second step, a bank of the LLD observers has to
be obtained. It is well-known from the linear FDI theory
(Frank, 1990; Gertler, 1993; Patton, 1994) that for the
observer synthesis, the matrix Φ such that Φx(t) = x

*
(t)

in the unfaulty case plays the main role. Here x
*
(t) is the

state vector of the observer described by the equations

(t)xH=(t)y

Jy(t), + u(t)G +  (t)xF=(t)x

∗∗∗

∗∗∗∗
•

(4)

with the output vector y
*
(t) and some matrices F

*
, G

*
, J

and H
*
. The observer generates the residual

)t(y-y(t)C=(t)r ∗

for certain matrix C.

Write down the approximate equalities

),(KF)(
 

 
d

dF
)(F)(F 00

0
0 γ−γ+=γ−γ

γ=γγ
+γ=γ

),(ÃG)( 
d

dG
)(G)(G 00

0
0 γ−γ+=γ−γ

γ=γγ
+γ=γ

and use the last expressions instead of the matrices
F(γ(t)) and G(γ(t)) in (2) respectively.

In the absence of faults, the following well-known set
of equations is fulfilled (Frank, 1990; Patton, 1994):

.CHH   ,GG   ,FJHF =Φ=ΦΦ=+Φ ∗∗∗ (5)

Consider the case when the residual r(t) has to be
sensitive to the faults and invariant under the unknown
inputs ρ(t) that is

Φ[Κ ¦ Ã] ≠ 0,  ΦΕ = 0. (6)

Assume that the structure of each LLD observer is
analogous to the one shown in Figure 1, therefore the
row matrix A

*
 exists such that the following relationships

hold in the unfaulty case:

if Ax(t) > 0,  then A
*
x

*
(t) > 0,

if Ax(t) = 0,  then A
*
x

*
(t)= 0,

Figure 1. Linear logic-dynamic system
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if Àx(t) < 0,  then A
*
x

*
(t) < 0.

Since x
*
(t) = Φx(t), then A = A

*
Φ which is equivalent to

the equality

].Arank[)rank( TT
MΦ=Φ (7)

This condition imposes an additional restriction on the
matrix Φ.

3. OBSERVER  DESIGN

To design an observer in the linear case, there are a
number of approaches, e.g., the eigenstructure
assignment (Patton, 1994), the approach based on the
Kronecker canonical form developed by Frank (1990).
Consider another linear procedure suggested by
Zhirabok (1997) also based on the Kronecker canonical
form that allows one to take into account condition (7)
easily.

It is well-known (Kwakernaak and Sivan, 1972) that one
can let

]0...001[H     ,

000

...

0...10

0...01

F

k

2

1

=


















β

β
β

= ∗∗ (8)

without increasing a dimension of the considered
observer. By analogy with Mironovsky (1979), transform
the observer with the matrices (8) into the open-loop
observer with the ones

].0...001[H   ,

0000

...

0...100

0...010

F =


















= ∗∗

This can be arranged by removing the feedback
coefficients β

1
, β

2
, ..., β

k
 and transforming the matrix J.

One can obtain, using equation (5) and these matrices,
the following equations:

Φ
1 
= CH,  J

i
H + Φ

i+1
=Φ

i
F,  i=1, 2, ..., k–1,  J

k
H = Φ

k
F (9)

where Φ
i
 and J

i
 are the i-th rows of the matrices Φ and

J respectively.

Equalities (9) can be transformed into the single equation

CHFk = J
1
HF k-1 + J

2
HF k-2  + ... + J

k
H (10)

where the row matrix C is determined as follows. Let E
*

and [N
1
 ¦ N

2
] be matrices of maximal rank such that

E
* 
E = 0 and [N

1
 ¦ N

2
] 







 ∗

H

E
= 0, then C = –N

2
. Actually,

CH = Φ
1
 from (5) and (8); since ΦE = 0, then N

1
E

* 
= Φ

1

for some matrix N
1 
by definition of the matrix E

*
.

Therefore CH = N
1
E

* 
and C = –N

2
 if [N

1
 ¦ N

2
] 







 ∗

H

E
= 0. If

N
2
 is not row matrix, one can use for C some row of N

2
 or

sum of them.

Algorithm

Step 1. Let  k = 1.

Step 2. If equation (10) is fulfilled for some row matrices
J

1
, J

2
, ..., J

k 
(this can be checked using the mathematical

packages, e.g. MATLAB), go to 4.

Step 3. Let  k = k + 1, go to 2.

Step 4. Obtain the rows of matrix Φ: Φ
1
 = CH,

Φ
i+1

 = Φ
i
F – J

i
H, i = 1, 2, ..., k – 1. If the matrix Φ does

not satisfy conditions (6) or (7), find another solution
of equation (10) otherwise go to 3.

Step 5. Let G'
*
 = ΦG' , G

*’
 = ΦG and obtain the row matrix

A
*
 from the linear algebraic equation ΦTA

*
T = AT. End.

4. STABILITY  OF  OBSERVERS

To obtain a stable matrix F
*
 in equation (4), it is necessary

to use a feedback in the observer and to correct the
matrix J correspondingly. Namely, if β

1
, β

2
, ..., β

k
 are the

feedback coefficients providing the necessary stability
of this matrix, then the i-th row J

i
 of matrix J has to be

replaced by the row J
i
 –  β

i 
C, i=1, ..., k. It is very important

that the matrix Φ does not change in this case therefore
the main properties of the observer (invariance under
the unknown inputs and sensitivity to the faults) are
not changed also. Actually, consider the i-th (i < k) row
of the first matrix equality in (5) with the matrix F

*
 from

(8) and the row matrix J
i
 replaced by J

i
 –  β

i
 C:

.FH)CJ( iii1i1i Φ=β−+Φ+Φβ +

Since CH = Φ
1
, it is easy to obtain equality (9); the same

is true for i = k. Therefore, the matrix Φ obtained with
Algorithm is left unchanged under that change in matrix
F

*
. Thus, the problems of the observer invariance under

the unknown inputs and stability of matrix F
*
 can be

solved independently of each other.

The third step of the suggested approach is formal: to
transform the LLD observer into the nonlinear one, the
term (G'

*
u(t))sign(A

*
x

*
(t)) has to be added to equation

(4):



(t))xAu(t))sign((G'+Jy(t)+u(t)G+(t)xF=(t)x ∗∗∗∗∗∗∗
•

.

This operation can change stability of the observer; to
improve it, one has to find the appropriate feedback
coefficients β

1
, β

2
, ..., β

k
 and to correct the matrix J as

pointed above.

5. MODIFICATIONS OF SUGGESTED APPROACH

5.1. Some extensions

It follows from our approach that the matrix G' in (3) can
be replaced by the matrix function G'(u(t), γ(t)) or G'(y(t),
u(t), γ(t)); in this case the additional term in (4) is of
form ΦG'(u(t),γ0)sign(A

*
x

*
(t)) or ΦG'(y(t),u(t),

γ0)sign(A
*
x

*
(t) ) respectively.

If there exist several nonlinearities in system (2) with
matrices  G'

1
, G'

2
, ..., G'

p
 and A

1
, A

2
, ..., A

p
 , one has to

form the compound matrix A=[A
1
T

 
¦ A

2
T

 
¦ ... ¦ A

p
T] T and

use it as pointed above.

The logical conditions in the LLD observers can be
relaxed by the extension of the vector x

*
(t) with the vector

y(t) as follows:

0
y

x
A >







 ∗
∗  or  0

y

x
A =







 ∗
∗  or  0

y

x
A <







 ∗
∗ . (11)

Thus, condition (7) can be replaced by the one

rank[ΦT ¦ HT] = rank[ΦT ¦ HT ¦ AT]. (12)

It is known that for the system described by the
equations

  ),t(Hx)t(y

,)t(E)t(u))t((G)t(x))t((F)1t(x

=
ρ+γ+γ=+

and the proper observer relationships (5) and (6) hold.
Thus, the suggested approach can be extended on the
descrete-time case.

5.2. Another types of nonlinearities

Consider another type of nonlinearity - a backlash
described by the following model:








σ−<σ+
σ≤

σ>σ−
=

, )t(Ax if     ))t(Ax(k)t(u'G

,)t(Ax if                                  0

,)t(Ax if     ))t(Ax(k)t(u'G

))t(u),t(x(B

where 2σ is the backlash span and k coefficient. In this

case it is impossible to use directly the approach
suggested above because it gives two different
nonlinear systems Σ

1
 and Σ

3
. To overcome this difficult,

assume that the model of the observer contains the
term analogous to B(x(t), u(t)):








σ−<σ+
σ≤
σ>σ−

=

∗∗∗∗∗∗∗∗

∗∗∗

∗∗∗∗∗∗∗∗

∗∗

;xA if     )xA(uk'G

,xA if                                  0

,xA if     )xA(uk'G

)u,x(B

let k
*
 = k and σ

*
 = σ without loss of generality.

Assuming that A
*
Φ = A one can obtain equations (5).

Therefore, this task is reduced to that considered in
Section 2 with restriction (7).

Two another types of nondifferenciable nonlinearities
(a saturation and a hysteresis) can be considered by
analogy, and they give identical results. Moreover, the
suggested approach can be used for another types of
nonlinearities such as sin, cos, log and so on in spite of
the fact that it is impossible to transform system (2) into
any LLD system in this case. Here restriction (7) reflects
not a logical condition but a condition of concordance
of nonlinearities in the initial system and in the observer.

5.3. Robustness

The ideal solution of the robustness problem is the exact
decoupling of the residual from the unknown inputs,
that is the condition ΦE = 0. In many cases the exact
decoupling is impossible, and we must use the
approximate one. The most fundamental method of such
decoupling is singular value decomposition: the matrix
E is expressed as

E = U Σ V

where U and V are orthogonal matrices,

, 

0

0

0

n

2

1



















σ

σ
σ

=Σ

M

ML

M

M

0 ≤ σ
1 
≤  σ

2 
≤  ...

 
≤  σ

n 
 are the singular values of E, ordered

by magnitude. Then the first p, p < n, coulombs of U
give the rows of matrix E0 which are the best choice for
the approximate decoupling (Lou, et al., 1994).

Consider some conditions to choose the integer p from
view-point of solving equation (10) (general
recommendations are in (Lou, et al., 1994)). Since the
condition of the exact decoupling is ΦE  = 0, then the
equality Φ = QE0 for any matrix Q is that for the



approximate decoupling, or Φ
i
= Q

i
E0, i = 1, 2, ..., k, and

Q
1
E0 = CH.

Last equality holds if

rank [(E0)T ¦ HT] < rank (E0) + rank (H). (13)

It follows from (9), that if one-dimensional observer
exists, then Q

1
E0F = J

1
H, therefore the inequality

rank [(E0F)T ¦ HT] < rank (E0F) + rank (H) (14)

is necessary condition to obtain such observer.

By analogy, it can be shown that the conditions for
existence of two- and k-dimensional observer are (in
addition to (14) because this condition corresponds to
both one-dimensional observer and the last component
of the vector x

*
(t)):

rank [(E0F)T ¦ HT ¦ (E0)T ] <
< rank [(E0F)T ¦  HT] + rank (E0),

rank [(E0Fk-1)T ¦ (HFk-2)T ¦ ... ¦ HT ¦ (E0)T ] <
< rank [(E0Fk-1)T ¦ ... ¦  HT] + rank (E0). (15)

If conditions (13) or (14) or condition (15) for any k > 1
do not hold, then the integer p must be increased.

These conditions can be used also to check if the exact
decoupling is possible. In this case the matrix E0 in (13)
– (15) must be replaced by E

*
.

It should be pointed out that if we use the approximate
decoupling, then the condition ΦΕ = 0 in (6) must be
replaced by Φ = QE0 for any matrix Q which is equivalent
to the equality

rank (E0) = rank [(E0)T ¦ ΦT].

Besides, to obtain the matrix C, the  matrix E
*
 has to be

replaced by E0. This must be taken into account in
algorithm.

6. EXAMPLE

Consider the following continuous-time system:

.1   ),t(x)t(y   ),t(x)t(y

),t(x)t(x

),t( ))t(u)t(x()t(x)t(x)t(x

)),t(x(sign)t(u)t(x)t(x

),t()t(x2)t(x)t(x

),t(x)t(x)t(u)t(x)t(u)t(x

04211

45

25324

5123

212

532211

=γ==
−=

γ+++=

+=

ρ+−=

−+−=

•

•

•

•

•

It contains two nonlinearities with the matrices A
1
 =

[ 0 0 1 0 0] and A
2
= [0 0 0 0 1 ], therefore

A = 







10000

00100
 and























−

−
−−

=

01000

10110

00010

00021

10010

F ,    







=

01000

00001
H ,























=

00

10

00

00

01

G ,  
 























=

00

00

00

00

10

' G 1
 
,
   























=

00

00

01

00

00

' G 2 ,























=

0

0

0

1

0

E ,   
 

. 

0000

1010

0000

0000

0000

]K[























=Γ

L

L

L

L

L

M

Obtain the observer invariant under ρ(t) and sensitive
to the fault γ(t). In this case



















=∗

10000

01000

00100

00001

E ,

thus, [ ] 







−

−
=

100100

010001
NN 21

M

M
M ,  and

C = [1  1]. It can be shown that equation (10) has a
solution for k = 3:

CHF3 = [1   –2   0   0   0] = –H
1
F2 + H

2 
,















−
=

10

00

01

J ,  
















−
=Φ

10000

00101

01001

.

Clearly, equality (12) is fulfilled; the matrix A
*
 from (11)

and the matrices G
*
, G'

*1
, G'

*2
 are the following:

 







−

−
=∗ 00100

32013
A ,


















=∗

00

01

11

G ,  















=∗

00

10

10

'G 1 ,  















=∗

00

01

00

'G 2 .

Let x
*1

(t) = x
1
(t)

 
+ x

4
(t), x

*2
(t) = x

1
(t)

 
+ x

3
(t), x

*3
(t) = –x

5
(t)

and obtain  the observer invariant under ρ(t):

).t(y)t(y)t(y)t(r

),t(x)t(y

),t(y)t(x

)),t(y3)t(y2)t(x)t(x3)(t(u              

)1))t(x(sign(u)t(x)t(x

),t(y)1)t(y3)t(y2             

)t(x)t(x3)(t(u)t(u)t(x)t(x

21

1

23

21212

3132

121

212121

∗

∗∗

∗
•

∗∗

∗∗∗
•

∗∗∗∗
•

−+=
=
=

+++−
++−+=

−++
++−++=

The following initial conditions were used for simulation:
x

1
(0) = 0, x

2
(0) = 0, x

3
(0) = 1, x

4
(0) = 10, x

5
(0) = 5, x∗1

(0) = 10,
x∗2

(0) = 1, x∗3
(0) = –5.

The simulation results for ρ(t) = 1, u
1
(t) = sin(5t) and

u
2
(t) = –11cos(7t) are shown in Figure 2: γ(t) changes

from 1 to 1.1 at t = 1 at once. Clearly, the residual is
sensitive to the fault γ(t) and invariant under ρ(t).

7. CONCLUSION

This paper is concerned with the problem of the
observer-based fault diagnosis in nonlinear dynamic
systems. The suggested approach consists of the
following main steps: replacing the initial nonlinear
system by certain linear logic-dynamic system, obtaining
the bank of the linear logic-dynamic observers and
transforming them into the nonlinear ones. This
approach was used for fault diagnosis in manipulation
robots (Filaretov, et al., 2001).
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