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Abstract This paper presents a frequency domain solution to the delay-type Nehari problem.
The solvability condition is formulated in terms of nonsingularities of three matrices. The
optimal valuey,,; is the maximal value such that one of the three matrices becomes singular
when+ decreases from-oco to 0. The all sub-optimal compensators are parameterized in

a transparent structure with a modified Smith predictor. Jk&pectral factorization of a
general para-Hermitian matrix is also given in this paper as a requisite for pGogfyright
(©2002 IFAC.
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1. INTRODUCTION ample (Zhou and Khargonekar, 1987; Flamm and Mit-
ter, 1987). It was shown in (Zhou and Khargonekar,

The H,, control of processes with delay(s) has been 1987) that this problem (in stable case) is equivalent to
an active research area since the mid 80's. Therecalculate the [0, h]-induced norm. However, for un-
are mainly three kinds of methods: operator-theoretic stable case, it is much more involved. Tadmor (1997
methods (Foiagt al, 1996; Dymet al, 1995; Zhou  presented a state space solution to this problem in
and Khargonekar, 1987), state-space methods (Nagpalinstable case, in which a differential/algebraic matrix
and Ravi, 1997; Tadmor, 1987Tadmor, 2000; Basar Riccati equation-based method was used. The optimal
and Bernhard, 1995) and frequency-domain methodsvalue relies on the solution of a differential Riccati
(Mirkin, 2000; Meinsma and Zwart, 2000). It is known equation. The suboptimal solution, of which the struc-
that a large class aff, control problems, including ture is not transparent, is very complicated. A more
the weighted sensitivity minimization problem, can be transparent solution is demanded.
reduced to the Nehari problem (Francis, 1987). It is
still true in the case with delay(s) and the simplified
problem is a delay-type Nehari problem.

Motivated by the idea of Meinsma and Zwart (2000),
this paper presents a frequency domain solution to
the delay-type Nehari problem. The optimal value
There are some papers calculating the infimum of the,,; is formulated in a clear way: it is the maximal
delay-type Nehari problem in stable case, see for ex-value such that one of three matrices becomes singular
when vy decreases from-oco to 0. Hence, one need
no longer solve a differential Riccati equation any
more. A prominent advantage is that the suboptimal

1 This research was supported initially by the Israel Science
Foundation (Grant No. 384/99) and then by the EPSRC (Grant No.

GR/N38190/1). solutions hold quite a transparent structure of modified
A 26-page full version of this paper is available at Smith-predictor. With some man-machine interactive
http://www.ee.ic.ac.uk/CAP/Reports/reports.html. operation, it is very easy to find the optimal value
2 Tet 44-20-7594 6295, Fax 44-20-7594 6282, Email using MATLAB.

zhonggc@ic.ac.uk)RL: http://come.to/zhongqc



Notation

Assume

oo -4

is a rational transfermatrix G(s) = D + C(sI —

A)~!B. Two operatorsactingon rationaltransferma-
trices, the truncation operatorr;, andthe completion
operatorry,, which dependon a parameteh > 0, are
definedas:

m{G} = [é g] — e oh [é eAgB]
= G(s) — e G(s),

m{G} = [C;_l g] _msh [%%]
= G(s) — e G(s).

Thisfollows (Mirkin, 2000),exceptfor asmalladjust-
mentin notation.Note that thesetwo operatoramap
ary rationaltransfermatrix G into anFIR block.

Ni1 Nio
Na1 Nao
matrix. Thefollowing notationsareintroducedor two
linearfractionaltransformationswhich arecalledho-
magraphictransformationgHMT) in (Kimura, 1996;
Delsarteetal., 1979):

Hr (N,Q) = (N11Q + Ni2) (N21Q + N22)_1 )
Hi (N, Q) = — (N11 — QNo1) ' (N12 — QNa)

wherethe subscript standdor left andr for right.

Let N = ] be a 2 x 2 block transfer

2. PROBLEM STATEMENT AND PRELIMINARY

Delay-type Nehari Problem(NPp,): Givenaminimal

realization
.| A|B
&= [Zefr]

which is not necessarilystable characterizehe opti-
malvalue 3

Yopt = Inf{[|Gp + ™" K|, : K(s) € Heo}
and,givensy > v, parameterizéhe suboptimalset
of properandcausalK (s) € Ho, suchthat

|Gs + e K|, <. (1)
It is well-known (Gohbeg et al., 1993)thatthis prob-

lemis solvableiff

7> Yopt = ||Cesn ||

3 Theargumentof a transfermatrix, s, is omittedfrequentlyhere-
afterfor clarity.

whereI" denoteghe Hankel operator Inspectingthe
transfermatrix e**G, one can seethat v, is not
less than the L[0, h]-induced norm of Gz (Foias
et al.,, 1996; Zhou and Khargonekay 1987; Gu et
al., 1996),i.e.,

Yopt > = ||G5”L2[0,h] '

Underthis condition, the matrix X2, is always non-
singular (Foias et al., 1996; Zhou and Khargonekar
1987;Guetal., 1996),whereX; is the (2, 2)-block
of

Y11 Y12 | - _Hh
Y = = 2
[221 222] © @

which is an exponential function with regard to a
Hamiltonianmatrix
-c*Cc A"

-2 *
H:[ A v BB]-

As shawn later, this exponentialHamiltonian matrix
¥ playsquiteanimportantrolein the H,, —controlof
dead-timesystems.

Variousmethods(Foiaset al., 1996;Zhou andKhar-

gonekay 1987; Gu et al., 1996) have beenproposed
to computeyy,. A simplerepresentatiofs (Zhou and
Khargonekar1987):

yn = max{y : det Loz = 0}, 3)

i.e. the maximal v that makes ¥, singular or the
maximalroot of det X5 = 0.

3. MAIN RESULT

Theoem1l. (Delay-typeNehari problem) Givenstrictly
properG g hasno jw-axiszeronor jw-axispole,there
always exist uniquesolutionsZ, < 0 andL, < 0,
respectiely, for the algebraicRiccatiequations

o 1[4 [ 1] <

e e [] =0

suchthat A + y~2BB*L. and A + L,C*C aresta-
ble* . Theoptimalvaluery,,; of thedelay-typeNehari
problem(1) is

Yopt = max{Yn, 11, Y2},

where

4 In MATLAB, in orderto obtaina solution L, < 0 suchthat
A + Lo,C*C is stable,the secondARE should be equivalently

A* C*C I
changedas[fLo I] [ 0 A] |:Lo:| = 0.



vh = max{y:det([ 0 I]X -?])20},

71 =max{y:det([ 0 I]% -LI"])=0},

vy = max{y : det([ Lo I] % LI]) —0}.
Furthermore,if v > ~opt, then aII-K(s) € H,

satisfying(1) areparameterizeds

K(s) = . ([Afs) ?] W‘l,Q> @)

where®

A = -mtm| P ] e

A+72BB'L, |(I = LonLe) " LonC* (I — LonLe) ™ (LonTa1 — £11)B
Wi(s) = - 1

772" (%5, - B L) 1
with Loy, = H (%, L,) and||Q(s)|| ;. < isafree
parameter

Remark2. It is clearthaty > v, ensureghe non-
singularityof ¥y, thaty > v, ensureshe existence
of L., andthaty > ~, ensureghe existenceof the
J-spectrafactorizatiorandthe stability of K (s).

The structureof K (s) is shown in Figure 1. It con-
sists of an infinite-dimensionalblock A(s), which
is an FIR block (modified Smith predictor), and a
finite-dimensionablock W —1(s). Theright-uppertag
meansW ~!(s) mapsthe right variablesto the left
variableswhile a left uppertag, if arny, meansthe
matrix mapstheleft variablego theright variables.

In orderto prove this theoremwe needa resultabout
the J-spectral(co-)factorizationof a generalpara-
Hermitianmatrix.

eI

Q

Figurel. Structureof K (s)

4. J-SPECTRALFACTORIZATION

Assumethatthetwo signaturematriceswith appropri-
atedimensiongiefinedas
] andJ = [I 0 ]

I 0
Iy = [0 —2I 0-I

5 The“0” elementsn somematriceshereafterare omitted quite
frequentlyfor clarity.

hold the samenumberof negative eigervalues.Fur-
thermore assume givenrationaltransfermatrix

A R| -B
—E -A*| "
C B*|D*JD

A= (5)

satisfieghefollowing conditions:

() E = E*, R = R*, which meansA™~(s) =
A(s) (sucha matrix is called para-Hermitianmatrix
(Kwakernaak2000));

(i) A hasno polesnorzeroson jw-axis;
(iiiy D is nonsingular

Since,in general R # 0 and/orE # C*J,C, itisim-

possibleto directlywrite A in theform G~ (s)J, G(s).

This makes the J-spectralfactorizationmuch more
complex. Many researcherbave alreadystudiedthe
J-spectralfactorization.However, by the knowledge
of the authors,they startedwith G~ (s)J,G(s) with

certain stable G(s) and only consideredthe case
A(s) which canbe explicitly written in the form of

G~ (s)J,G(s). In this case,one needsthreestepsto

find the J-spectrafactorof amatrix (Meinsma,1995):
firstly, to find the modal factorization;secondly to

constructa stableG 4 (s) suchthatthe original matrix
is equivalentto G (s).J,G4 (s); thirdly, to derive the
J-spectraffactor

Herewe shav analternatve wayto find the J-spectral
factorfor a generalpara-Hermitiarmatrix in onestep
without modal factorization.Hence,the A-matrix is
not split.

Lemma3. (J—spectral factorization) AssumeA(s)
satisfiegheabove conditionsand(E, A) is detectable,
thenA(s) hasa J—spectraFactorizationf andonly if
thefollowing two conditionshold:

(i) Two algebraicdRiccatiequations
A R Ao |
o[ 2 [ 7] =

and

[ I]([_AE _IZ*} - [‘C’?] D-1J;'D* [C B*)) [AI] =0

have unique symmetricsolutions\, and A., respec-
tively, suchthat

IIEEAl

and

o1 4 S| - @ ie s [ ]
arestable;
(i) det(I — A.X) # 0.

If theseconditionshold, thenone J—spectrafactoris
representeds



Wis)=|L0 A+ X E | B+ X.C*
TOAT | [=TIDTFB A A CYT =X A)H| D )

Dually, thefollowing lemmaholds:

Lemmad. (J—spectral co-factorization) AssumeA(s)
satisfieghe above threeconditionsand (4, R) is sta-
bilizable,thenA(s) hasa J—spectralco-factorization
if andonly if thefollowing two conditionshold:

(i) Two algebraicRiccatiequations

[ ][] =0

and

L 5[ I

ISIEANE

have uniquesymmetricstabilizingsolutionsA. and
Ao, respectiely, suchthat

o ]| =4 me

]D—lJ;lD—* [C B*]) [%] =0

—FE —A* /\c
and
x5 ][] oo e s )
arestable;

(i) det(I — AoAe) # 0.

If these conditions hold, then one J—spectral co-
factoris representeds

W)= [(A+ A \—(I—)\OAC)*(B+/\OC*)D*1J*1} [1 0 }

T B+ D* 01

PROOF. Omittedbecaus®f pagelimitation.

5. THE PROOFOF THEOREM1

Associatethe NP, problem (1) with the following
systemin input-outputrepresentation

21| [Gge "] [wm
z9 B I 0 U2
Ug = K22

or, equivalently, in chain-scatteringepresentation

2]-1537%] 2] on[:)

thenthe closed-looptransfermatrix canbe re-written
as

TZ1’U1 = HT(G, K) = G[—} + e *"K.

PROOF. (of Theorem1) It has already beenwell
known (Kimura, 1996; Meinsmaand Zwart, 2000;
Greenetal., 1990)thatthe H,, controlproblem

Hr (G, E)loe <

is equivalentto that G~ J,G hasa J-spectralfactor
V (s) suchthatthe (2, 2)-block of GV ~! is bistable.
Hence|n this proof, we characteriz¢he conditionsto
meettheserequirements.

The main idea underlyingis to find a unimodular
matrix to equivalently rationalizethe systemandthen
to find the J-spectralfactorizationof the rational-
ized system.This idea was usedin (Meinsmaand
Zwart, 2000) where a 2-block problemwas consid-
eredbut the resultwas for a stablecaseand cannot
be directly usedherebecaus&(s) is not necessarily
stable We borrovedsomeideasfrom therebut we use
avery basictool, similarity transformationto find the
realizationof therationalizedsystemHere,we prefer
to keepthe A-matrix in the original form andnot to
split it by modalfactorization.

Theproofis dividedinto threesteps:

(i) Find a predictor A(s) to equivalently rationalize
thesystem;

(ii) Findtherealizationof therationalizedsystem;

(iii) Find the J-spectralfactorizationof the rational-
izedsystem.

Thefirst two stepsarealsousedn (ZhongandMirkin,
2001)to provetheresultof theextendedNehariprob-
lemwith adelay wherethestability conditionof K (s)
is not needed(but the stability of G + e *"K is
required).The predictorwasobtainedas

[(Gp I

A =-m{7(| G 3|26 @

andtherealizationof therationalizedmatrix

0= [I A(S)N: G”JWG[AI 0]

0 I (s) I
is
A 0 -¥,C* B
o= -Cc*C —-A* | E,C* 0
—C%11 —C%q2 I
0 B* —2I
Its inverseis
A 7_2BB* 0 7_22113
0! — —A* -C* 7_22213
-C I
Y*B*%5 -y ?B*Eh -1

Obviously, ®~! is in the form of (5). Directly apply-
ing the result obtainedin Lemma4, ©~1(s) hasa
J—spectralco-factorizationif andonly if two Riccati
equations



exist uniguesymmetricstabilizing solutionsL, < 0
andL,, respectiely, anddet(I — L,y L.) # 0.

Sincethe secondHamiltonianmatrixin (7) is similar

A 0 . . .
to _C*C —A* | the unique stabilizing solution

L, canalsobeobtainedas
Lon = (Z11Lo + Z12)(T21Lo + T22) ™! = H, (T, L)

(if X271 L, + ¥55 is nonsingular)whereL, < 0 isthe
uniquestabilizingsolutionof

18] |gve e 7] 0

The J-spectrako-factorof ©—1, W, *(s), canthen
besimplifiedas

Wit (o= [
Y

Now, we have obtainedthefollowing identity:

A+~72BB*L, ‘(I — LonLe) ' LopC* (I — LopL) ™t
C I

(LonXo1 — X]11)’}’7lBj|

“2B*(25 — 31 Le) 7

~ [T =A@s)™ ~ I 0
G JVG_[O 7 ]W J'VW[—A(s)I]
where
Aty *ZBBL |- LhL) YLonC* (I = LonLe) ™ (LonZo1 — £11)B
T |
B*( 221—211L I
As we have shavn, W(s) and o are all
' —A(s) I

bistableand,hence ¥ (s) —AI(s) ?

factorof G~ J,G. This meansthatary K(s) in the

form
K(s) =M, ([Afs) ?] W, Q)

(where||Q(s)|| . < v isafreeparameter}atisfies

isa.J-spectral

|G +e"K||,_ <7~

Furthermore,in orderto make K(s) € Hy, the
bistability of the (2, 2)-block of the matrix

My e | . I 0], 4
II = =G W~
[H21 ]._.[22 :| |:A(S) :|

is required.

With similar agumentof MeinsmaandZwart (2000),
the bistability of II,» is equivalentto the existenceof

L,y andthe nonsingularityof I — L, L. (or equva-
lently thenonsingularityof I — L.L,;) notonly for

but alsofor any numberlargerthan+y. Sincey >

is anecessargonditionand,underthis condition, X5,

is awaysnonsingulaZhouandKhargonekay 1987),
theexistenceof L, is equivalentto thenonsingularity
of ¥o1 L, + X9o. Hence the solvability conditioncan
be summarizedasfollows:

() There exists a 70 > 0 such that ¥y =
[01]x

meansyo

?] is alwaysnonsingularfor v > 7. This

= Yns
(i) Thereexistsay: > 0 suchthatXs; L, + X2 =

[0 I] b LI"] is alwaysnonsingularfor v > ~;;
(iii) Thereexistsa~vs > 0 suchthatl — L.L, is al-
waysnonsingularfor v > . Whenthe condition(ii)
is satisfiedthenonsingularityof I — L.L,}, is equiva-

lentto thatof (I — LcLoh)(EmLo + 222) =Yo1L,+
L
Y92 = Le(Z11Lo + Z12) = [—L. I] X [ Io

The minimal v which satisfieghe above threecondi-
tionsis the optimalvaluey,p,:

Yopt = max{yn, Y1, Y2},
where
v = max{y:det([ 0 I]% ?]) =0},
71 =max{y:det([ 0 I]|Z LIO]) =0},
o = may a2 113 [ ]) =0)

This completeghe proof.

Threespecialkcasesreoutlinedin thefollowing corol-
laries:

Casel: If A is stable,thenL, = 0, L. = 0 and
Lo, = £12%5, . Condition (iii) is always satisfied
andcondition (i) becomeghe sameascondition (i),
i.e.,only the nonsingularityof o5 is required.In this
caseopt = Yh-

Corollary 5. Given strictly properstableGz hasno
jw-axiszeronor pole, the delay-typeNehariproblem
(1) is solvableiff v > ~4, or equivalently, Yoy is
nonsingulamot only for ~ but also for any humber
larger than . Furthermore,if this condition holds,
thenK (s) is parameterizeds(4) where

A B3, C* -5,'B
W=(s) = —C I
v 2B}, I

Case2: If delayh = 0,thenX® = I andL,; = L,.
Theconditions(i) and(ii) arealwayssatisfiedandLL,,
alwaysexists.Hence theconditionsarereducedo the
nonsingularityof I — L,L. for any v > 7. In this
caseyopt = y2 = max{~y : det( — L,L.) = 0}.

Corollary 6. Givenstrictly properG hasno jw-axis
zeronor pole,the delay-freeNehariproblem(to find
K(s) € Hy suchthat||Gs(s) + K(s)|l,_ < ) is
solvableiff v > max{y : det(I — L,L.) = 0}.
Furthermore,if this condition holds, then K (s) is
parameterizeds



where

[A + 7 2BB*L.|(I — LyL) "L,C* —(I - LOLC)*IB'|
Wl(s) = -C 1

[ —y"2B*L, I J

and[|Q(s)||z_ < visafreeparameter

Remark7. Thisis analternatve solutionto the well-
known Nehari problem which has been addressed
extensiely, e.g.in (Francis,1987;Greenetal., 1990).
The A-matrix A is notsplithere.In commonsituation,
it was handled by modal decomposition,see, e.qg.
(Greenet al., 1990), and the A-matrix A is split
into two parts,a stablepart and an anti-stablepart.
Actually, it can be shavn that, in this case,y,p: =
HFGB || = max{y : det(I — L,L.) = 0}.

Case3: If delayh = 0 and A is stablethenL, = 0,
L. =0,L,, = 0,andX = I . Theconditionsare
alwayssatisfiedfor v > 0. K(s) is parameterize@s
(4) whereA(s) = 0 and

Al0 B
W-l(s)=|C|I = [é _fﬁ].
0| I

Thisis obvious.For stabledelay-freeNehariproblem,
the solutionis definitely K = —Gg + Q(s) for ary
v > 0, where||Q(s)||;_ < v is afree parameterin
this case;y,p: = 0.
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