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4-6, 1348 Louvain-La-Neuve, Belgium (corresponding author)

e-mail : dochain@csam.ucl.ac.be, fax : 32-10-472180
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Abstract: This paper focuses on the application of modal decomposition to a nonlinear
convection-reaction-diffusion distributed parameter system (DPS). More precisely it
will concentrate on the dynamical model of an industrial pulp bleaching tubular
reactor described by nonlinear partial differential equations (PDEs). The objective
of the modal decomposition is to generate, for control design, a discretized finite-
dimensional model that contains the dominant modes of the process dynamics. The
modal decomposition has been performed on a linearized tangent model of the process.
It results in eigenfunctions that are modified Bessel functions of complex order.
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1. INTRODUCTION

There are many industrial processes in which the
states, outputs and control variables vary spatially
as well and temporally. These processes are known
as distributed parameter systems (DPS). The nat-
ural form of the models that describe distributed
parameter systems are partial differential equa-
tions (PDEs), integral equations or trandscenden-
tal transfer functions (Ray, 1981). Currently, for
simplification and control purposes, most indus-
trial processes are represented by lumped param-
eter models, which are characterized by ordinary
differential equations. However, a large number of
these processes are actually distributed in nature,
and simple lumped parameter models that ignore
the spatially varying nature of the DPS will often

suffer from strong interactions and apparent time
delays due to the underlying diffusion and convec-
tion phenomena inherent in these processes (Gay
and Ray, 1995). Examples such as heat transfer
and sheet forming processes, heat exchangers, re-
actors and bioreactors, are just a few of the many
processes where the dependent variables may vary
in space as well as in time. For the purpose of
this work, we will concentrate on partial differen-
tial equation representations of DPS because they
stem from fundamental momentum, energy and
material balances for a process. More specifically,
we will concentrate on one specific type of PDE:
parabolic equations. Parabolic systems play an
important role in the description of the dynamics
of chemical processes. Parabolic equations can be
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used to describe the dynamics of tubular reac-
tors whenever dispersion phenomena are present.
Typically parabolic equations modeling tubular
reactors with axial dispersion can be viewed as a
very general case, which is intermediate between
the ideal cases: the continuous stirred tank reactor
(CSTR) and the plug-flow reactor (PFR).

Research in the field of control of DPS has been
ongoing since the 1970’s. Ray published a survey
of applications of distributed parameter systems
theory, which encompassed a large number of
fields, indicating a need for further applications
research (Ray, 1978). Dochain (Dochain, 1994)
notes that although research in the theory of
DPS is still quite active, it faces two problems.
The first is related to the high degree of abstrac-
tion of DPS: a lot of the research is done by
mathematicians who handle rather abstract and
complex mathematical objects (the mathematical
complexity is due to the infinite dimensionality
of DPS). This complexity then makes the connec-
tion with practical aspects of industrial process
and systems very difficult. The second problem is
that most results do not apply to nonlinear DPS
(Dochain, 1994).

Analytical solution of partial differential equa-
tions describing DPS is generally nontrivial and
in many cases impossible (Hanczyc and Pala-
zoglu, 1995). Due to the mathematical complexity
of PDEs, approximation methods have been stud-
ied to a great extent. Conventional approaches for
control of DPS are based on spatial discretization
of the PDE model, yielding a finite number of or-
dinary differential equations in time (Christofides
and Daoutidis, 1996). The rich theory available
for the control of lumped parameter systems can
then be applied to the discretized system of ODEs.
Unfortunately, common discretization techniques
such as finite difference, finite element and fi-
nite volume methods often yield large systems
of ODEs, making the problems computationally
unattractive and losing information contained in
the model. Also, notions such as controllability
and observability may depend on the discretiza-
tion method and the number and location of dis-
cretization points (Ray, 1981).

Efforts have been made to reduce the number of
ODEs necessary to represent the true distributed
parameter system. Orthogonal collocation and
other weighted residual methods (Villadsen and
Michelsen, 1978) can result in systems of lower
order. For parabolic systems, modal decomposi-
tion has often been employed to provide approxi-
mate solutions and theoretical results regarding
control of DPS (Gay and Ray, 1995). Murray-
Lasso (Murray-Lasso, 1965) first presented modal
decomposition for DPS in the 1960’s, and it was
developed to a great extent by Ray (Ray, 1981).

It is based on the ability to represent the spatially
varying input and output of the system as a sum of
an infinite series of the system spatial eigenfunc-
tions and time-dependent coefficients. This is sim-
ilar to the collocation and weighted residual tech-
niques; however modal analysis has the distinct
property that the spatial eigenmode coefficients
are decoupled. Motivated by the fact that modal
decomposition uses the natural structure of the
PDE to solve for the spatial eigenfunctions (which
is property that the above methods do not have),
the purpose of this research is to investigate modal
decomposition techniques and evaluate them for
use in control applications.

This paper focuses on the application of modal
decomposition to a nonlinear convection-reaction-
diffusion distributed parameter system, i.e. the
dynamical model of an industrial pulp bleaching
tubular reactor. The major challenges encoun-
tered in this case study are two fold: first, the
bleaching reactor model consists of a coupled set
on nonlinear PDEs. These are first linearized re-
sulting in a set of nonlinear ODEs which has no
analytical solution. Numerical solution of these
ODEs is followed by a step whereby functions
were fitted to the steady state solutions. Modal de-
composition of this linearized model involved the
solution of the spatial ODE which involves four
variable changes in order to obtain an ODE which
has an analytical solution yielding the eigenfunc-
tions. The resulting eigenfunctions of the spatial
operator are Modified Bessel Functions of complex
order, which are not common in the literature. A
number of simulations as well as a comparative
study with finite difference results was done.

2. DYNAMICAL MODEL OF THE PULP
BLEACHING TUBULAR REACTOR

The principle objective of pulp bleaching is to
achieve a high brightness. This objective must
be met without compromising the strength of
the final product, which can occur if there is
significant cellulose degradation during bleaching.
The color in the pulp is due for the most part
to lignin: a natural polymer occurring in the
pulp. In Kraft pulping (which is the method we
use here), the bleaching is an extension of the
fiber delignification process started in the digester.
Chlorine dioxide is one of the most important
chemicals used in bleaching chemical pulp because
it reacts readily with lignin, yet does not react
to a significant extent with the carbohydrates
(cellulose) (Dence and Reeve, 1996).

The bleaching reactor model consists of a set of
nonlinear coupled PDEs. The two reactants in
the model are chlorine dioxide (C) and lignin (L).



The reaction term is a bilinear term. The PDEs
describing the reactor dynamics are:

∂L

∂t
=−v ∂L

∂z
+D

∂2L

∂z2
− klLC (1)

∂C

∂t
=−v ∂C

∂z
+D

∂2C

∂z2
− kcLC (2)

and the boundary conditions are:

∂L(0, t)
∂z

=
v

D
(L(0, t)− Lin − Lo) (3)

∂L(H, t)
∂z

= 0 (4)

∂C(0, t)
∂z

=
v

D
(C(0, t)− Cin − Co) (5)

∂C(H, t)
∂z

= 0 (6)

where Cin, Lin, H , Co and Lo are the inlet chlo-
rine and lignin concentrations, the bleaching tower
height, and constant adjustment parameters de-
termined from the kinetic studies done by (Savoie
and Tessier, 1997).

3. LINEARIZED TANGENT MODEL

The bleaching reactor model consists of a set of
nonlinear coupled PDEs. This creates a problem,
since modal decomposition is only possible on
linear systems (Ray, 1981). The model must there-
fore first be linearized around a chosen operating
trajectory.

The steady-state values of C and L, Css and
Lss, are solutions of the following differential
equations:

−v dLss
dz

+D
d2Lss
dz2

− klLssCss = 0 (7)

−v dCss
dz

+D
d2Css
dz2

− kcLssCss = 0 (8)

The ODEs (7)(8) are nonlinear and have no ana-
lytical solution. They must therefore be solved nu-
merically (with the extra difficulty that the ODEs
have initial and final conditions). The steady state
profiles of both variables have been computed for
the following parameter values of the industrial
pulp bleaching reactor :

kc = 0.006, kl = 0.035, Linss = 31Kappa

Lo= 9Kappa, Cinss = 2.5 g/l, Co = 1.3 g/l

v= 1/30min, D = 0.5/30

An exponential model was then fitted to the re-
sults of the numerical integration. Figure 1 shows
the results of the integration. A least squares
fit was done on the log of the data. Other trial

Fig. 1. Exponential fit of the steady-state profile

functions (e.g. polynomials of various orders) were
tested to see if they resulted in better fit, how-
ever the exponential function provided the best
fit. Also, the benefit of having chosen a simple
exponential function to fit Css and Lss, is that as
a consequence, there exists an analytical solution
of the spatial ODE. The resulting exponential
models for both Css and Lss are:

Css = 0.6459e−1.5675z (9)

Lss =
ξin + klCss

kc
= 15 + 3.7678e−1.5675z(10)

If we let C̃ = C − Css and L̃ = L − Lss, the
linearized tangent model can be written as follows:

∂L̃

∂t
=−v ∂L̃

∂z
+D

∂2L̃

∂z2
− klLssC̃ − klCssL̃(11)

∂C̃

∂t
=−v ∂C̃

∂z
+D

∂2C̃

∂z2
− kcLssC̃ − kcCssL̃(12)

∂L̃(0, t)
∂z

=
v

D
(L̃(0, t)− L̃in) (13)

∂L̃(H, t)
∂z

= 0 (14)

∂C̃(0, t)
∂z

=
v

D
(C̃(0, t)− C̃in) (15)

∂C̃(H, t)
∂z

= 0 (16)

4. MODAL DECOMPOSITION

4.1 Model triangularization

Modal decomposition is carried out on the lin-
earized tangent model (11)-(16). Because of the
coupling of the equations (11)(12), a first step
then consists of introducing a state transforma-
tion (which corresponds to a system triangulariza-
tion) so that the first equation becomes indepen-
dent of the second one in order to allow to perform
the modal decomposition in a recursive way. Let
us consider the following state transformation :

η1 = kcL̃− klC̃, η2 = C̃ (17)

This change of variable yields the following set of
PDEs with boundary conditions:



∂η1
∂t

=−v ∂η1
∂z

+D
∂2η1
∂z2

(18)

∂η2
∂t

=−v ∂η2
∂z

+D
∂2η2
∂z2

− kcLssη2
−Css (η1 + klη2) (19)

∂ηi(0, t)
∂z

=
v

D
(ηi(0, t)− ηi,in), i = 1, 2 (20)

∂ηi(H, t)
∂z

= 0, i = 1, 2 (21)

This transformation eliminated the reaction term
from the first PDE and is related to the notion
of reaction invariants (Gavalas, 1968) (Bastin and
Dochain, 1990).

4.2 Modal decomposition of η1(z, t)

We can proceed with the modal decomposition
for the first variable η1(z, t). The first step is to
assume that the state variable η1 and the input
variable η1in can be written as follows :

η1(z, t) =
∞∑
n=1

pψn(t)ψn(z) (22)

δ(z)η1in(t) =
∞∑
n=0

qn(t)ψn(z) (23)

Substituting (22)(23) into Equation (18) yields a
set of separable ODEs in time and space:

dpψn(t)
dt

+ λψpψn(t) = qn(t) (24)

D
d2ψn
dz2

− v dψn
dz

+ λψnψn = 0 (25)

v
dψn(0)
dz

+Dψ(0) = 0 (26)

dψn(1)
dz

= 0 (27)

The solution to (25) (using separation of vari-
ables) is:

ψn(z) =

Gne
v

2D z

[
cos

(sψn
2D
z
)
+
v

sn
e
v

2D z sin
(sψn
2D
z
)]
(28)

where:

sψn =
√
v2 − 4Dλψn (29)

On application of the boundary conditions, sψn,
are found by solving:

tan
(
L

2D
sψn

)
=

2vsψn
s2ψn − v2 (30)

Therefore the eigenvalues, λψn, can be found by
rearranging (29):

λψn = −s
2
ψn + v

2

4D
(31)

Using the properties of orthogonal functions and
Sturm-Liouville theory, the Gn coefficients are
chosen such that ‖ψn‖2 = 1. With the eigenvalues,
λψn, one may then solve (24). The solution is then
given by:

η1(z, t) =
∞∑
n=1

[eλψnt
〈
η1,0, ψ̃n

〉
ψn

+

t∫
0

eλψn(t−s)
〈
δ(z)vη1in, ψ̃n

〉
ψn](32)

where ψ̃n are the eigenfunctions of the adjoint
operator (where Mn are chosen such that

∥∥∥ψ̃n∥∥∥
2

= 1) : ψ̃n = Mnψn(L− z).

4.3 Modal decomposition of η2(z, t)

The modal decomposition of (19) is more compli-
cated, due to the exponential terms in ‘z’, and the
presence of a term in η1. Substituting (9)(10) into
(19) and combining terms yields:

∂η2
∂t

=−v ∂η2
∂z

+D
∂2η2
∂z2

− (
0.09 + 0.04521e−1.5675z

)
η2

− (
0.6459e−1.5675z

)
η1 (33)

If the term in η1 = 0, then (33) may be decom-
posed using the separation of variables method
shown above. In that case, after separation of
variables, an eigenvalue problem is formulated and
can be solved. The eigenfunctions, together with
appropriate time-dependent functions and some
free constants, can then be combined in an infinite
series (Street, 1973). Since η1(z, t) �= 0, one must
solve the associated eigenvalue problem (with η1
= 0), with η1 regarded as an input. As before, we
let:

η2(z, t) =
∞∑
n=0

rn(t)γ1n(z) (34)

We obtain ODEs in the spatial and time variables:

−v dγ1n
dz

+D
d2γ1n
∂z2

+
[
λγ − 0.09− 0.04521e−1.5675z

]
γ1n = 0 (35)

D
dγ1n(0)
dz

− vγ1n(0) = 0 (36)

dγ1n(1)
dz

= 0 (37)

drn
dt

+ λγrn = 0, rn(0) = rn,0(38)



The solution is based on a sequence of four
successive change of variables, as suggested in
(Murphy, 1960) (starting with Entry #106 in
Tables of Equations of Second Order, p.321)(for
further details, see (Brown, 2001)). This yields an
ODE of the form:

#2
5

d2γ5n
d#2

5

+#5
dγ5n
d#5

+
(
#2

5 − p2) γ5n = 0 (39)
Equation (39) is the well known Bessel’s Equa-
tion (Entry #274 in Murphy, p.331). Due to all
the changes in variables and the numerical values
of the constants, it is actually Bessel’s modified
equation (#275 in Murphy). The analytical solu-
tion to (35) is then given by (α1 = 1.5675, α2 =
2.1015):

γ1(z) =
(
e−α1z

).6378[
C1Ip

(
α2

√
e−α1z

)
+ C2I−p

(
α2

√
e−α1z

)]
where Ip is a modified Bessel function of order p

and argument
(
α2

√
e−α1z

)
. Here, the order of the

modified Bessel functions is given by:

p =
√
10.4190− 97.6778λγ (40)

We now proceed with the full solution using
the boundary conditions given by (36)(37). This
results in finding the values of λγn such that
(36)(37) are satisfied. The eigenvalues of the so-
lution are found within the order of the modified
Bessel function. It can be seen that upon applica-
tion of the boundary conditions in this case, that
the zeros of the Bessel functions will be functions
of their orders (Gray and Mathews, 1931).

One other added complication is the value of
(36)(37) are complex (non-real) for varying λγ̇n.
This makes finding the λγn’s difficult, as root
finding techniques for complex valued functions
are not widely available. However, according to
(Gray and Mathews, 1931), modified Bessel func-
tions of the second kind Kp(z), as well as the
combined function Ip(az)Kp(bz) − Ip(bz)Kp(az)
have no real zeros unless p is purely imaginary,
and it can be shown that they have an infinite
number of such zeros. Although (36)(37) is neither
of the above functions, it was thought that there
was a possibility that an infinite number of λγn’s
which satisfied the boundary condition did exist;
especially since the order of the modified Bessel
functions, p, in (36)(37) is purely complex.

The following procedure for finding the values of
λγn has been considered. Let us first denote the
boundary conditions by B.C. = 0. As previously
mentioned, the value of B.C. is not real valued,
but is complex valued. Therefore in order to
find where B.C. = 0, we use the fact that its

magnitude, |B.C.| should be zero when B.C. =
0. In other words, when B.C. = α + iβ with
magnitude |B.C.| =

√
α2 + β2 and if B.C = 0,

then: |B.C| = 0. One may then use conventional
root solvers such as fsolve in Maple c© to find the
values of λγn such that the boundary conditions
are satisfied. The first five values of λγn are equal
to : λγ1 = 0.10666666 , λγ2 = 0.35581402 , λγ3 =
0.85265051 , λγ4 = 1.6759089 , λγ5 = 2.8276587.
Having found the first five eigenvalues, one can
now express the full solution of η2(z, t) using
the eigenfunctions and the expression given by
(34). Equation (41) shows in the first term, the
”unforced” part of the solution; and the second
term represents the ” forced” part of the solution:

η2(z, t) =
∞∑
n=0

[eλγnt 〈η2,0, γ̃1n〉 γ1n

+

t∫
0

eλγn(t−s) 〈η1(z, t), γ̃1n〉 γ1nds](41)

However in this case, one must note that although
we consider only the unforced solution of η2(z, t),
(i.e. η2,in(t) = 0), there is still a “forced” part
which contains the input term in η1(z, t).

Fig. 2. Numerical simulation of η1(z, t)

5. SIMULATION RESULTS

Numerical simulations of both η1 and η2 have
been performed. The simulation conditions were
as follows : at t = 0, initial conditions were such
that the reactor had a profile other than that
of steady state (ηi(z, 0) = 0.1, i = 1,2), and it
was assumed that there was no variation from
the steady-state value of the input (ηi,in(t) = 0,
i = 1, 2). Figures 2 and 3 depict η1(z, t) and
η2(z, t) from their initial states of 0.1 to the steady
states with five modes. For comparison purposes a
finite difference solution with two hundred spatial
discretization points was done. A comparison was
made by integrating the difference between the
two solutions in space and in time (Figure 4). In
general the error is fairly small (around 10−4).



Fig. 3. Numerical simulation of η2(z, t)

Fig. 4. Integral of the difference between finite
difference and modal decomposition

6. CONCLUSIONS

This paper has focused on the application of
modal decomposition to a nonlinear convection-
reaction-diffusion distributed parameter system,
more precisely on the dynamical model of an in-
dustrial pulp bleaching tubular reactor described
by nonlinear parabolic equations. The modal de-
composition has been performed on a linearized
tangent model of the process. It resulted in eigen-
functions that are modified Bessel functions of
complex order. Since the objective of the modal
decomposition is to generate, for control design,
a discretized finite-dimensional model that con-
tains the dominant modes of the process dynamics
(Brown, 2001), particular care has been taken to
perform in the most generic way so as to allow
the application of the methodology to the largest
possible class of nonlinear parabolic equations.
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