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Abstract: This paper describes a multi-scale stochastic model defined on a
multiwavelet structure. Previously such stochastic models are based either on a
single or multiple binary tree as well as on an ordinary wavelet structure. The
proposed model lies on a tree structure consists of several sets of data coeflicients
as a result of multiwavelet transformation. Each data sets is linked only through
initial data set at root node and conditionally independent given this initial
state. Multiwavelet possesses several interesting properties like simultaneously
short support, symmetry and orthogonality. The effect of these properties on the
proposed model is shown through simulation of smoothing process of a certain
fractal signal. It will be demonstrated that several improvements over previously

announced results are obtained.
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1. INTRODUCTION

Research topic focusing on the descriptions and
applications of the multi-scale stochastic process
recently has gained momentum thanks to the
nice properties of such model on dealing with
fractal signal (Chou et al., 19944), (Chou et al.,
199456), (Daniel and Willsky, 1997), (Fabre, 1996),
{Sembiring and Akizuki, 20006), (Sembiring and
Akizuki, 2000@). Originally the model is defined
on a single binary tree, see e.g. (Chou et al.,
1994a), (Chou et al., 1994b), then it is expanded
further with model on wavelet (Fabre, 1996). The
authors gave another model from different point
of view in (Sembiring and Akizuki, 2000a). On
the other development, the wavelet theory gets
another impulse driven by the introduction of
multiwavelet, see e.g. (Strela et al., 1999), (Strela
et al., 1995). The multiwavelet has been known
to have several advantages over ordinary wavelet
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Fig. 1. Dyadic tree T

such as possesses simultaneously short support,
symmetry and orthogonality properties.

The basic construction of a multi-scale stochastic
model is a state space evolving on a dyadic tree T,
instead of Z, given in Fig. 1, as a data structure.
Upon going down the tree towards the finest scale
N, the resolution doubles from scale to scale, and
vice versa. The Haar wavelet decomposition or a



pure decimator derived from the wavelet theory
behaves just like the upward evolution, and the
synthesis process is equivalent to the downward
path. This paper expands the model further on
multiwavelet structure by exploiting its strength.

2. MULTIWAVELET
2.1 Multi-resolution Analysis

This section contains a brief review of the mul-
tiwavelet theory, which is itself an addition to
the body of wavelet theory. It falls on the realm
of of multi-resolution analysis (MRA). But in-
stead of assuming single scaling function ¢(2),
the multiwavelet extends the MRA by M scaling
function ®(t) = [#1(t), - ,ér(t), - dm(t)) €
L2(R)M,1 < r < M, such that the following two-
scale matrix dilation equation is satisfied

®(t) = V2> G2t —k), forkeZ (1)
k

where Grez € PP(Z)M*M are M x M scaling
coefficients. For orthonormal scaling function, it
can be shown that

> GiGhyy = Imboy, for k,leZ  (2)
k

The multiwavelet theory stated that one can de-
rive a multiwavelet ¥(t) = [¢1(t), -, (), -
Yu(t)] € 2(R)M,1 < r < M, which also pre-
serve the following two-scale matrix equation

U(t)=v2) He®(2t—k), forkeZ (3)
k

where Hyez € 12(Z)M*M are M x M wavelet co-
efficients. In orthogonal multi-resolution analysis
the next relation

> GiHY = Oy, for k1€ Z (4)
k

is hold and the matrix Hj in this orthonormal
system satisfies the condition below

S HHY,, = Imboy, fork,1€Z  (5)
k

The pair of Egs. (1) and (3) can be realized
with matrix filter banks operating on M input
data stream and producing 2M decimated by 2
output streams. If z(¢) denotes input signal, then
multiwavelet decomposition of this signal can be
obtained by recursively calculate the following

Unk = Z Gm—2kUn-1,m for m,k € Z  (6a)
m

Wnk = Z Hm—?kvn—l,m for m, keZ (6b)
m

where vy, i, wnx are coefficients of multiwavelet
transformation at scale 0 < n < Nin M x 1

column vectors. The original signal then can be
reconstructed through synthesis equation

Vne1k = 3 GhamUnm + Y Hi—gmwam (7)
m m

This paper will concentrate on two types of or-
thogonal multiwavelet, the Geronimo, Hardin and
Massopust (GHM) and the Chui-Lian (CL) mul-
tiwavelet, see Table 1 for multiscaling and multi-
wavelet matrix filters of each system.

Table 1. Multiwavelet filters.
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2.2 Pre-filtering

As described in the previous subsection, the mul-
tiwavelet system needs M row of input data
streams, and in particular choosing the GHM or
CL wavelet results in M = 2 input data streams.
There are several kinds of pre-filtering for this pur-
pose, two of which are used in this paper, namely
repeated row and critical sampling method de-
scribed in (Strela et al, 1999). Critical sam-
pling pre-filtering combined with CL multiwavelet
transformation produces data streams whose co-
variance matrix takes diagonal form, whereas re-
peated row processing with GHM multiwavelet
produces almost diagonal covariance. Through
simulation the effect of both pre-filtering methods
will be given.



3. STOCHASTIC MODEL

Stochastic model based on wavelet decomposition
has been covered in (Fabre, 1996). The extension
of this model on multiwavelet structure, given
apparent advantages of multiwavelet, is the main
topic in this paper. The multiwavelet transfor-
mation consists of filtering Gyez € 1P(Z)M*M
and Hyez € 12(Z)M*M followed by a decimation
by two. In this paper, the filtering process with
G, followed by such decimation will be referred
as a, and for Hy will be denoted by S respec-
tively. Thus the operators a and 8 work from
I12(Z) to 1*(2Z). For a given signal or vector X,
at scale n where 0 < n < N, the aX,, is the
coarse approximation at scale n+ 1, whereas f X,
yields the detail lost in this approximation. From
Eq. (7), the reverse process, i.e. going from coarse
to fine involves adjoint operators @ and S for filter
GT and HF respectively. From Egs. (2), (4), (5),
and (7), it is clear that the following perfect re-
construction conditions are satisfied

aa+pBB=1 (8a)
da=1=p3p (8b)
aff = 0= Ba (8¢)

Upon close examination of the coeflicients after
applying operators a and j, the data set at scale
n consists of M data rows either at approximation
decomposition or at detail decomposition. In the
subsequent parts when necessary, these rows of
data are denoted by r where 1 < r < M. In case
of GHM and CL mutiwavelet, it is clear that there
exists M = 2 rows of data at each scale n, see
Table 1.

Now the relation of the transformation above
with the stochastic modeling can be explained as
follows. General multi-scale stochastic model can
be written as

Xn+1 = (C_!nAn + Ban)Xn + Wn+1 (ga)
Yn+1 =CXn+Va (gb)

where n denotes scale index increasing towards
finest scale N, recall Fig. 1. The &, are mul-
tiwavelet transformation adjoint operators. X,
is the state vector with stationary white noise
W,., and Y, is the observation vector also with
stationary white noise V,,. These noises are inde-
pendent each other, and independent to the data
at initial root Xy. The variables A,,, B,, and C,,
are matrices with appropriate dimensions. The
model written in Eq. (9) can be associated with a
synthesis process of multi wavelet transformation,
see Eq. (7), such that the evolution of Eq. (9) is
towards finer scale through adjoint operators &
and . If necessary the notation (X,),, is used
to denote the data at scale n, row r-th and node
s-th.

Once transformation is carried out, the coeffi-
cients becomes the observation Y,,. Provided that
several conditions are satisfied, a very efficient
smoothing algorithm of (Chou et al., 1994a) can
be applied. These conditions are summarized in
the following theorem.

Theorem 1. Let XY,, = {(wnXp)r,, (wWnYn)r,
wn={0,8},0<n<N,1<r<M1<s<n?}
be the data set of multiwavelet transformation.
Assume that the noises in Eq. (9) are white Gaus-
sian with covariances P,, and @, respectively, con-
stant over scale. The set XY, is linked through
(Xo)r, only, and conditionally independent given
X¢ at root node.

PROOF. The proof mainly depends on the prop-
erties of noises W,, and V,,. On the G, filter side,
pre-multiply Eq. (9) with ¢, then using Eq. (8) one
will have w, X, = Aw,_1Xn_1 + w,W,. Con-
ditioning with respect to X,_1, only w,_1Xn_1
is needed to estimate X,_;, so that w,X, is
linked to the coarser scale through w,—;X,-1,
and it is conditionally independent given X,_;.
Now using Eq. (2) the w, X, actually consists of
{(wpXpn)r,|1 <7 < M} which is orthogonal each
other. Noting that the covariance of the noises are
constant over scale, it can be concluded that the
(wpXy)r, is uncorrelated. The same conclusion
can be achieved at the Hj filter decomposition.

Furthermore (w,Yy)r is linked to (X,)r through
(wnXn)r, and it is conditionally independent
given (X,),. This conclusion can be achieved from
wnY, = Cw,X, + w,V, and the similar argu-
ments above.

Combining the two facts completes the theorem.

Based on the theorem, the fast algorithm derived
in (Chou et al., 1994a) can be applied on each
set XY, where the smoothing process is inde-
pendent. Different from the model on the wavelet
structure where the number of data sets is equiv-
alent to the length of filter taps, in multi wavelet
decomposition the number is M times as much.

4. SIMULATION

The subject of this section is the smoothing pro-
cedure of a certain fractal signal using the model
described in the previous section. Assume an
observation signal corrupted by white Gaussian
noise (SNR = +/2) depicted as dashed line in
Figs. 2, 3, 4 and 5. The sample path of the
true signal of this noisy observation is generated
through multi-scale system elaborated in (Chou et
al., 1994a), (Chou et al., 1994b) and given by the
dotted line in those figures. The smoothing results



Haar wavelet

Fig. 2. Smoothing on Haar wavelet
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Fig. 3. Smoothing on Daubechies4 wavelet

on a variety of wavelets are given by solid line. On
the close examination of the graphs, a smoothing
based on Haar wavelet reveals some blocky nature
mentioned in (Chou et al., 1994a). A better result
can be achieved through Daubechies4 wavelet, see
Fig. 3, refer also (Fabre, 1996). Finally Figs. 4
and 5 depicted the smoothing of the signal on
the GHM with repeated row pre-filtering and CL
multiwavelet structure with critical sampling pre-
filtering, respectively, which shows further im-
provement over previously announced method, es-
pecially in capturing the high frequency variation
of the sample signal.

The qualities of the proposed smoothing result
based on GHM and CL multiwavelet are given
numerically in Table 2, as well as the result us-
ing Haar wavelet in (Chou et al., 1994¢) and
Daubechies4d wavelet in (Fabre, 1996) for com-
parison. The MSE value of each process shows
that the proposed method gives better perfor-
mance. Other important quality measurement is
the Bhattacharrya distance which is given to show
the closeness of two random vector. It is based on
the following formula

1. 11
Bu(Ry,Ra) = 5 111“-2-(}21 + Rg)H

. iln [I(Rle)’] (10)

where R;, Ry, denote the covariance matrices of
both random vectors, and [R| is the determinant

GHM wavelet

Fig. 4. Smoothing on GHM multiwavelet, re-
peated row pre-filtering

CL. wavelct

Fig. 5. Smoothing on Chui-Lian multiwavelet,
critical sampling pre-filtering

of the matrix R. Given two random vectors with
probability of obtaining a sample from either
vectors is 1/2, the probability of error of deciding
from which process the sample was is bounded by
the following

1
P(error) < Eexp—Bd(Rl JR2) (11)

Bhattacharrya distance and the bound of the
probability of error confirm that the smoothing
based on the CL multiwavelet outperforms ordi-
nary wavelet base. The CL multiwavelet in partic-
ular produces better smoothing results compare
to the GHM as seen in Figs. 4, 5 and Table 2.
This is due to the input vectors of the CL multi-
wavelet which has diagonal covariance matrix as a
result of critical sampling pre-filtering employed.
In addition, the computation of critical sampling
pre-filtering followed by CL multiwavelet is faster
than repeated row pre-filtering plus GHM multi-
wavelet. There are two reasons for this facts, first
the size of each wavelet itself, 2 x 6 for CL mul-
tiwavelet compare to 2 x 8 for GHM. The second
is that the critical sampling pre-filtering produce
a half length data vectors for system input.



Table 2. Quality of smoothing.

Wavelet MSE By P(error)
Haar 1.319928 5.501938  0.002039
Daubechiesd  1.333280 3.806540 0.011112
GHM 1.313699 5.779562  0.001545
Chui-Lian 1.301453 3.586756 0.013844

5. CONCLUSION

This paper describes an attempt of modeling a
stochastic system evolving on multi wavelet struc-
ture. Simulation results show that based on the
derived model, in particular a smoothing pro-
cedure of a certain fractal signal gives several
improvement over previously published construc-
tion.
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