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Abstract: A general class of discrete-time uncertain nonlinear stochastic 
systems with quadratic sum constraints is considered. A linear fixed order 
state estimator for state estimation is presented for various estimation error 
performance criteria in a unified framework. The observer is of order equal 
to the difference between the state and output vector dimensions. The 
performance criteria considered in this paper include guaranteed-cost 
suboptimal versions of estimation objectives like H2, H∞, stochastic 
passivity, etc. The design of fixed-order linear state estimators that satisfy 
these criteria are given using a common matrix inequality formulation. 
Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
The problem of fixed (reduced)-order linear state 
estimator design is formulated using linear 
matrix inequalities (LMI) for a general class of 
uncertain discrete-time nonlinear stochastic 
systems. Various criteria are used in designing 
discrete-time estimators leading to a common 
LMI framework. The reason for choosing this 
approach is the possible utilization of efficient 
numerical schemes for solving LMI (Boyd, et al 
1994). In the model used, the system and 
measurement vectors are assumed to be driven 
by possibly state-dependent deterministic or 
stochastic disturbances defined by quadratic sum 
constraints. These disturbances may be generated 
e.g., by white noises for which covariance upper 
bounds are determined by unknown nonlinear 
functions of the state vector. Such nonlinear 
models with pointwise quadratic constraints are 
introduced in (Jacobson, 1974), and their system 
theoretic properties are investigated using an 
LMI approach in (Yaz and Yaz, 1999a). Mean-
square stabilizability by state feedback and 
mean-square detectability concepts for this class 
of systems are developed and based on these, the 
infinite horizon linear quadratic regulator is 
presented in (Yaz, 1989a). Covariance 
assignment formulation is used to characterize 

static output feedback stabilizability in the mean-
square sense and parameterize all stabilizing  
 
gains in (Yaz and Yaz, 1999b). Full-order 
minimum variance state estimator design is  
introduced in (Yaz, 1988). In the present work, 
various estimation problems including 
guaranteed-cost suboptimal version of H2, H∞, 
stochastic passivity, etc. are tackled with a 
common framework. In that sense, the present 
work can be viewed as an extension of 
minimum-variance results of (Yaz, 1988) to the 
case of reduced-order estimation for generalized 
performance criteria with quadratic sum rather 
than pointwise quadratic constraints in time.  
 
The following notation is used. Z+ is the set of 
nonnegative integers. For an n-dimensional 
vector of real elements ∈x Rn, x denotes the 
2-norm, (xTx)1/2. For an 
n x n symmetric matrix A, A > 0 (A < 0) and A ≥ 
0 (A ≤ 0) denote positive (negative) definite and 
positive (negative) semidefinite A. The Schur 
complement formula which states the 

equivalence of   ≥ 0 and C > 0, A ≥ 

BC
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-1BT and A > 0, C ≥ BTA-1B is used in this 

work. (max λλ (for symmetric A) 
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respectively mean the maximum and minimum 
eigenvalue of A. A† denotes the unique Moore-
Penrose pseudo-inverse of the A matrix. The 
form of Rayleigh’s inequality 

IAAIA )()( maxmin λλ ≤≤

kkk BpAxx +=+1

kkk DpxCy += 1

for symmetric A is 
used. E{x} and Ey{x} respectively denote the 
expectation of x and its expectation conditional 
on y. The interlacing of expectations E{Ey{x}} = 
E{x} is also used. 
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(d) Linear systems with state multiplicative 
disturbances Cqxkwk where wk ∈  l2 (i.e. 

w∑
∞

=0k
k2 < ∞) or wk ∈  l∞ (i.e. supkwk) < 

∞). 
 (e)    Linear systems having nonlinear stochastic 
systems in the feedback loop, where                        
the feedback system has a stochastic dissipativity 
property. For example, if δf, εf, and βf are all 
positive real numbers, the feedback system 
possesses stochastic version of very strict 
passivity. There are several special cases where 
for example taking δf = εf = 0 would result in 
simple (mean-square stochastic) passivity:  

 
2. SYSTEM AND MEASUREMENT MODELS 
 
We assume that the signal is generated by the 
following system and the measurement equations 
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 Another special case is e.g. δf = 1, εf = –1, and βf 
= 0 to yield an H∞ norm less than or equal to 1: 
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where the state xk∈ Rn and the measurement 
yk∈ Rp. C1 is of full rank without loss of 
generality. The initial state x0 is assumed to have 
the known mean E{x0} = 0x , covariance 
E{x0x0

T} = X0, and to be uncorrelated with other 
noise sources. The unknown disturbance pk, 
which may be a nonlinear stochastic function of 
xk in general, is defined by stochastic dissipation 
inequality as follows: 

 
Other models that fit this description can be 
found in (Jacobson, 1974), (Yaz and Yaz, 
1999a), and (Yaz, 1989b). One can see that some 
of the most important deterministic and 
stochastic nonlinear models in use today can be 
treated in this general framework. 
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3. ESTIMATOR DESIGN 

 
We define the linear state transformation  
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for any N∈ Z+, where  where zk ∈  Rn-p and C2 is a full rank matrix such 

that   is nonsingular with  
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This description is motivated by the breadth of 
realistic feedback models it encompasses, for 
example: ( 21
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           (6)  (a) Linear systems with state-multiplicative 
noises Cqxkvk where vkis a zero mean 
uncorrelated noise sequence with an uncertain 
second moment having a known bound. 

 
It is always possible to find a C2 for a given full 
rank C1 such that (6) is true. In fact, based on the 
full rank properties of C1 and C2, we can find 
explicit expressions for Ω1 and Ω2 using the 
results in (Ben-Israel and Greville, 1974) as 
follows: 

(b) Nonlinear systems with random 
sequences whose powers depend on sector-
bound nonlinear function of the state ψ(xk)≤ 
α xkwhere the form of the nonlinearity may 
not be known but the bound α is known.  (c) Nonlinear systems with a random 
sequence whose power depends on a bounded 
nonlinear function of the state φ(xk)Cqxkvk where  
φ(xk) satisfies φ(x)≤ α for all x∈ Rn. 
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The vector zk defined by (5) is one of the 
intermediate variables in this estimator design 
process. Note that it follows from (2), (5), and 
(6) that if we knew what zk and pk were, we 
would be able to find xk as follows: 

 
The estimate of vk can be constructed (based on 
the same assumptions as made before) as  
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However, pk is an unknown disturbance and zk 
can not be directly measured, so the estimate of 
xk denoted by  can be formed by kx̂
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Therefore, to be able to estimate xk, an estimate 
of  zk (which is (n-p)-dimensional) is sufficient 
since the measurement yk is available. This 
implies that we need to look at the dynamics of 
yk and zk:  

 
by using (12) and (13). It can be inferred from 
(5) and (11) that this iteration is to be initialized 
with 0020ˆ KyxCv −=

kk v −=&
. The resulting 

estimation error e  has the dynamics kv̂
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The following result summarizes the main 
contribution of this paper: 
 

 Theorem 1. Consider the stochastic nonlinear 
model (1) – (4), the performance output  where we substituted from (1) and (8). We define 

kkk Kyzv −=&                                 (11)  

krkrk pDeCr +=                            (16)  
which is the variable that is directly used in 
forming the estimator. K is called the observer 
gain. Note that vk has the same dimension as zk 
and estimating vk is equivalent to estimating zk 
since yk is the known measurement vector, or  

and the reduced-order linear state estimator 
given by (9), (12) and (14). If the following LMI 
hold 
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The dynamics of vk can be found from the 
dynamics of zk and yk as follows: 
 

where 
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for some Y, P1 > 0, P2 > 0, and τ1, τ2 ≥ 0, then the 
state and estimation error dynamics satisfy: 
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for all N∈ Z+, where the estimator gain is found 
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4. APPLICATION TO VARIOUS 
ESTIMATION PROBLEMS 

 
Theorem 1 given above allows one to design 
different estimators for a variety of performance 
criteria for this class of systems. For example, 
taking δ = 0, β = 0 and ε < 0 yields 
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Since LMI (17) hold, then by Schur’s 
complement result, Η ≥ 0. Therefore,  

This means that by employing the optimization 
procedure described above, we can obtain a tight 
bound on the mean-square estimation error.  
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By taking δ > 0, β = 0, ε = 0, B =0, D = 0, Dq = 0 
and Dr = 0, we obtain 
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which yields a bound on the energy of the 
performance output in terms of the initial 
estimation error (suboptimal H2 result). 

Summing over k, leads to (19) which completes 
the proof. 
 

 The above proof of the main result provides a 
procedure for designing state estimators with 
improved response. By applying Rayleigh’s 
inequality in (19), one can see that  

If we set δ = 1, β = 0, and ε < 0, for x0 = 0 and e0 
= 0, this produces the result 
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which is a bound on the stochastic (mean-square) 
l2 to l2 gain of the estimator (suboptimal H∞ 
result. 
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Several dissipative estimator designs are also 
possible using this formulation. For 
example, taking x0 = 0, e0 = 0, δ = 0, β = 1 and ε 
> 0 will yield the stochastic (mean-square) 
version of the input strict passivity result: 
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So, maximizing λmin(P2), τ1 and τ2, minimizing 
λmax(P1) and λmax(P2) subject to LMI (17) will 
give a smaller mean-square error. This is a 
generalized eigenvalue problem solvable by 
available LMI software as explained in (Boyd, et 
al, 1994). 

 
Other similar dissipativity results are also 
possible. For example, setting δ = 0, β = 1, and   
ε = 0 will give stochastic passivity: 
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 Setting δ > 0, β = 1, and ε = 0 will yield output 
strict passivity:  E. Yaz (1988) “Linear state estimators for 

nonlinear stochastic systems with noisy 
nonlinear observations,” Int. J. Control, 48, 
2465.  
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E. Yaz (1989a) “Infinite horizon quadratic 
optimal control of a class of nonlinear stochastic 
systems,” IEEE Trans. Autom. Control, 34, 
1176.  

 
Also, setting δ > 0, β = 1, and ε > 0 will give 
strict passivity both in terms of the input and the 
output (very strict passivity in the mean-square 
sense):  

E. Yaz (1989b) “Robust design of stochastic 
controllers for nonlinear systems,” IEEE Trans. 
Automatic Control, 34, 349.  
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Y. I. Yaz and E. E. Yaz (1999a) ”On LMI 
formulations of some problems arising in 
nonlinear stochastic system analysis,” IEEE 
Trans. Automatic Control, 44, 813.   
E. E. Yaz and Y. I. Yaz (1999b) “Stochastic 
stabilizability of a class of discrete-time 
nonlinear stochastic systems,” Proc. of 1999 
IFAC World Congress, Beijing, China, J, 253. 

So, one can see that this LMI formulation allows 
one to consider a variety of performance criteria 
in a common framework. 
 

 5. CONCLUSIONS 
 
We have considered reduced-order linear state 
estimator designs for a class of discrete-time 
uncertain stochastic systems with quadratic sum 
constraints and general dissipative performance 
criteria. We have shown that a common 
framework using linear matrix inequality 
formulations can be provided to solve diverse 
estimator design problems. The future work will 
involve the robustness study of these estimators 
in the presence of uncertain parameters and the 
performance study to inquire whether 
degradation in performance results due to the use 
of this reduced-order formulation. 
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