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Abstract: The paper is concerned with on-line process steady-state optimization
under uncertainty. In such cases a single process model optimization can yield a
set-point far away from the one optimal for the true process. The way to improve
the set-point is to apply steady-state feedback, i.e., an iterative optimizing algorithm
utilizing new measurements available after every subsequent set-point application.
Integrated System Optimization and Parameter Estimation (ISOPE) method yields
subsequent set-points converging to the true process optimum, despite uncertainty.
It requires, at every iteration, model parameters to be updated under certain
additional equality constraint. The aim of the paper is to present how the ISOPE
can be redesigned resulting in a new structure without this constraint. Moreover, the
parameter estimation itself is then not necessary at every iteration, although possible
when reasonable. Copyright c© 2002 IFAC
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1. INTRODUCTION

Optimizing set-point control of industrial plants
in a multilayer structure is the subject of the
paper, i.e. on-line set-point optimization under
uncertainty in available plant models and distur-
bance estimates (Findeisen et al., 1980; Morari et
al., 1980; Tatjewski, 1988). The steady-state case
is considered, i.e. when uncontrolled inputs (dis-
turbances) vary slowly or abrupt but rare, as com-
pared to the controlled plant dynamics. Practi-
cally important cases with significant uncertainty
are under consideration, when the set-points opti-
mal for the available model can differ significantly
from the set-points optimal for the true plant.
Therefore, the evaluated model-optimal set-points
can lead to substantial deterioration in productiv-
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ity when applied to the true plant. To cope with
the uncertainty, on-line measurement information
from the plant must be then combined with model
optimizations to improve the plant productivity.
This leads to iterative optimizing set-point control
algorithms (iterative set-point improvement algo-
rithms). The classical approach, the iterative two-
step procedure of subsequently repeated process
model optimizations and process model parameter
estimations, yields suboptimal results and does
even not guarantee improvement. However, the
modified iterative two-step method, more com-
monly called the Integrated System Optimization
and Parameter Estimation (ISOPE), generates
set-points converging towards the true plant op-
timum. The method was originally proposed by
Roberts (1979). Theoretical optimality and con-
vergence analysis for the improved, augmented
algorithm (with certain convexification) was given
in (Brdyś et al., 1987a). Numerous papers were
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then published: to cope with output constraints
(Brdyś et al., 1986; Lin et al., 1988; Tatjewski
et al., 1995), to improve effectiveness of the up-
dating strategy (Tatjewski and Roberts, 1987), to
extend the algorithm for complex, interconnected
systems, e. g. (Brdyś et al., 1987b; Tatjewski et
al., 1990). Many efforts were devoted to improve
the crucial, from a practical viewpoint, part of
the ISOPE algorithms – the technique to estimate
effectively derivatives of the plant input-output
mapping, utilizing on-line output measurements.
The development of the dual ISOPE algorithm
proposed by Brdyś and Tatjewski (1994) was here
a breakthrough, a recent result by Roberts (2000)
also addresses this point.

In all cited papers the basic ISOPE structure is
preserved, consisting of two main steps: the model
parameter estimation problem (MPE) and the
modified model optimization problem (MMOP).
The task of the MPE is to adjust (estimate, adapt)
the model parameters utlizing new available mea-
surements and under certain additional equality
constraint. The aim of this paper is to present
how the ISOPE can be redesigned resulting in a
new algorithm structure not requiring this con-
straint. Moreover, the MPE itself occurs to be
not necessary at every iteration, although possible
when reasonable. The obtained structure shows
clearly what is really necessary to preserve the
appealing advantage of the ISOPE approach, i.e.
convergence of the subsequent set-points to the
true plant optimum, despite uncertainty.

Organization of the paper is as follows. First, the
task of the optimizing set-point control in the mul-
tilayer structure and the algorithms for iterative
set-point optimization under uncertainty will be
briefly reminded. Then the ISOPE approach will
be developed and discussed, in a simple and orig-
inal way not published previously. Finally, basing
on this development, the proposed new modified
structure will be presented and commented.

2. OPTIMIZING SET-POINT CONTROL

The well known idea of multilayer control is to
split the general control task, which is the gener-
ation of optimal trajectories of the manipulated
variables, into a sequence of different and hier-
archically structured sub-tasks handled by dedi-
cated control layers. Regulatory control and set-
point optimization are the two basic, well estab-
lished layers. The plant together with regulatory
controllers constitute the first layer which can be
treated as a fast dynamic part of the system. It is
assumed to follow desired steady-states prescribed
by the set-points c for controllers, in spite of fast
disturbances. Evaluation of economically optimal
values of the set-points is the task of the second,

optimizing control layer, using measurements of
certain process outputs y. These are those tech-
nological variables which, together with the set-
points c, are essential for the process efficiency,
i.e. which enter the performance function Q or
formulations of constraints. For steady-state op-
timization the static controlled plant model re-
lating c and y is needed, valid for possible range
of changes in the set-points c and uncontrolled
outputs w. This is usually a nonlinear model and
a corresponding optimization problem is often a
difficult one. Moreover, the influence of uncontrol-
lable inputs w usually has significant impact on
the overall plant performance.

It is assumed that a scalar performance function
Q(c, y) of the plant economical performance is
used and all other objectives are formulated as
constraints, e.g., on product quality. The steady-
state optimizing set-point control problem (OCP)
can be formulated as finding the optimal value
ĉ∗(w) of the set-points, despite uncertainty:

minimize Q(c, y)
subject to y = F∗(c, w)

c ∈ C
(1)

where F∗ : Rn × Rr �→ Rm represents the
input–output mapping (static characteristics) of
the true plant and C is a fesible set for the set-
points. It is assumed, consequently, that F∗ is
unknown and only its approximate model F is
available, y = F (c, w̃, α), where w̃ is a distur-
bance estimate and α denotes adjustable model
parameters. Therefore, the following steady-state
model optimization problem (MOP) corresponds
to the OCP:

minimize Q(c, y)
subject to y = F (c, w̃, α)

c ∈ C
(2)

with a solution ĉm(w̃, α). Obviously, in the pres-
ence of uncertainty ĉm(w̃, α) can significantly dif-
fer from ĉ∗(w), leading to deterioration in the
performance function value.

To cope with uncertainty in modeling and in
disturbance estimates, on-line measurement infor-
mation from the plant must be combined with
model optimizations to improve the performance
function. This leads to iterative optimizing set-
point control algorithms. A rather straightforward
and classical approach, the iterative two-step pro-
cedure, consists of repeatedly performed:

• steady-state model optimization (i.e., solving
MOP) followed by implementation of the
resulting set-points in the plant controllers
(first step), and then
• output measurements in a new steady-state
followed by estimation (adaptation) of the
model parameters α (second step) – and back
to solving the MOP, etc.



It is known and rather obvious that this procedure
is generally not optimal, i.e., it does not lead (if
convergent) to the plant true optimal set-point
ĉ∗(w) (which a solution of the OCP (1)). Starting
from c0, it generates a sequence of set-points
cn, cn = ĉm(w̃, αn−1), resulting from subsequent
parameter adaptations and model optimizations

c0 → α0 = α(c0)→ ĉm(w̃, α0) = c1 →
→ α1 = α(c1)→ ĉm(w̃, α1) = c2 → · · · → c∞

where ĉm(w̃, αi) denotes a solution of the model
optimization problem MOP for given parameter
values αi, α(ci) denotes parameter values ob-
tained from model adaptation using steady-state
measurements after application of the set-point ci.

At every model-optimal point ĉm(w̃, αi) optimal-
ity conditions for the MOP are satisfied. On the
other hand, at true plant optimal set-point ĉ∗(w)
optimality conditions for the optimizing control
problem OCP are satisfied. Looking at differences
between MOP and OCP it can easily be seen that
in order to achieve the same necessary optimality
conditions for the points c∞ and ĉ∗(w), derivatives
of the plant mapping and its model must be equal
at these points, i.e.,

F
′

c(ĉm(w̃, α
∞), w̃, α∞) = (F∗)

′

c(ĉ∗(w), w) (3)

where α∞ = α(c∞) and F
′

c(c, w, α) denotes par-
tial derivative with respect to c, F

′

c(c, w, α) =
∂
∂cF (c, w, α), etc. It is difficult, if at all possible, to
satisfy the condition (3) – from obvious reasons:
the model is only approximate and location of the
point ĉ∗(w) is not known in advance. Therefore,
matching true plant mapping derivatives by its
model derivatives in the whole domain of possible
set-point changes would only guarantee the re-
quired equality at the limit point of iterations. But
this is a contradiction – we assumed significant
uncertainty in the plant model, and a model with
accurate derivatives would mean a highly precise
model !

It follows from the presented argument that spe-
cial attention must be paid to the accuracy of the
plant model and, especially, its derivatives when
applying the single model optimization or the two-
step procedure of interchanging parameter esti-
mations and model optimizations. However, it is
usually not possible to construct very accurate
plant models, especially when the range of admis-
sible input signal variations is broad. Moreover,
the iterative approach is not needed when having
a good model, a single model optimization would
then suffice.

In practice, models often occur to be quite crude.
An alternative approach would then be to try to
acquire precise knowledge of the plant mapping
derivatives only locally, utilizing in a suitable way
the plant output measurements at current points.

It turns out that this information can be used
in the model-based optimizations in a way that
forces convergence of the model-based solutions
towards the true plant optimum. This is pre-
cisely the essence of the modified iterative two-
step procedure, more commonly known as the In-
tegrated System Optimization and Parameter Es-
timation (ISOPE) method (Roberts, 1979; Brdyś
et al., 1987a).

3. THE ISOPE METHOD

Precise derivation and formal analysis of the
ISOPE method can be found in e.g. (Brdyś et
al., 1987a). Briefly speaking, the idea of the
ISOPE approach is as follows:

• to use, instead of the MOP, the following
modified model-based optimization problem
(MMOP):

minimizec{qmod(c, ci, w̃, αi) =
= Q(c, F (c, w̃, αi))− λ(ci, αi)T c}

subject to c ∈ C
(4)

where

λ(ci, αi)T = Q
′

y(c
i, F (ci, w̃, αi))·

· [F ′c(ci, w̃, αi)− (F∗)
′

c(c
i, w)] (5)

and the subscript i indexes iterations,
• to perform the model parameter estimation
MPE (yielding adapted parameter values αi)
at the point ci under the additional con-
straint

F (ci, w̃, αi) = F∗(ci, w) (6)

This constraint requires that, at the current
set-point ci, the output from the model after
the parameter update should be equal to the
measured process output.

Now, it follows directly from the construction of
the MMOP that

the performance function of the MMOP (4) has at
each point ci the derivative equal to the derivative
of the performance function of the original opti-
mizing control problem (1), provided the condition
(6) is satisfied.

Indeed,

(qmod)
′

c(c, c
i, w̃, αi) = Q

′

c(c, F (c, w̃, α
i))+

+Q
′

y(c, F (c, w̃, α
i)) · F ′c(c, w̃, αi)+

−Q′y(ci, F (ci, w̃, αi))·[F
′

c(c
i, w̃, αi)−(F∗)

′

c(c
i, w)]

where (qmod)
′

c(c, c
i, w̃, αi) denotes the derivative

with respect to the first argument. Now, if (6) is
satisfied then at c = ci



(qmod)
′

c(c
i, ci, w̃, αi) = Q

′

c(c
i, F∗(ci, w))+

+Q
′

y(c
i, F∗(ci, w)) · (F∗)

′

c(c
i, w)

= (q∗)
′

c(c
i, w) (7)

where
q∗(c, w) = Q(c, F∗(c, w)) (8)

is the performance function of the OCP (1) after
its conversion to the following simplified form with
the variables y eliminated:

minimize {q∗(c, w) = Q(c, F∗(c, w))}
subject to c ∈ C. (9)

Imagine now the MMOP is used instead of the
basic model optimization problem MOP in the it-
erative two-step procedure of model optimizations
and parameter estimations. That is, iterations of
the set-points are done in such a way that a solu-
tion ĉ(ci) of the MMOP problem becomes the next
process set-point ci+1, ci+1 := ĉ(ci), etc. Then, if
the sequence {ci} is convergent to a point, say
c̃, this point satisfies c̃ = ĉ(c̃). So it is, in the
convergence limit, both the initial and the optimal
point of the MMOP. Further, the equality (7) im-
plies then that c̃ satisfies also necessary optimality
conditions for the OCP. Indeed, c̃ is an optimal
point for the MMOP, so it satisfies its necessary
optimality conditions. Provided the constraint set
C is convex, these optimality conditions can be
written as

(qmod)
′

c(c̃, c̃, w̃, α̃) · [c− c̃] ≥ 0 for all c ∈ C (10)

where α̃ is a parameter set corresponding to ci =
c̃. However, due to (7), (10) can be rewritten as

(q∗)
′

c(c̃, w) · [c− c̃] ≥ 0 for all c ∈ C (11)

This means that the point c̃ satisfies necessary
optimality conditions for the OCP (9).

Concluding, a point satisfying necessary optimal-
ity conditions of the original optimizing set-point
control problem (1) is the convergence limit of the
iterations of the ISOPE – of the the two-step
procedure with the model optimization problem
MOP replaced by the MMOP and the parameter
estimation problem performed under the condi-
tion (6). Therefore, the set-point optimal for the
true plant (precisely, satisfying necessary optimal-
ity conditions for the OCP) can be reached – not
a suboptimal one as it is in the case of the classi-
cal iterative two-step procedure of (not modified)
model optimizations and parameter estimations.
(Certainly, the conclusion is strictly true provided
all measurements are precise, in practice there
is always certain suboptimality connected with
measurement errors.)

However, there is a price for such an excellent re-
sult – at every subsequent set-point ci the deriva-
tive F

′

∗(c
i, w) of the true controlled plant input-

output mapping must be estimated, to evaluate

the modifiers λ, see (5). Certainly, this estimation
must be based on on-line measurement informa-
tion and is obviously not an easy task. In the first
period of development, applicability of the ISOPE
algorithms was hampered by the lack of efficient
methods of this derivative estimation. The situa-
tion was changed by the development of the dual
ISOPE algorithm (Brdyś and Tatjewski, 1994),
further developed as the two-phase dual algorithm
(Tatjewski, 1998), see also (Tatjewski et al., 2001),
(Roberts, 2000).

Summarizing, the general structure of the ISOPE
algorithms is as follows:

Step 0. Given initial set point c0, set iteration
counter i := 0 and initialize algorithm internal
parameters.

Step 1. Apply set-point ci to the controlled
plant, measure the corresponding steady-state
outputs yi = F∗(ci, w), calculate the derivative
F
′

∗(c
i, w) (the technique to evaluate this deriva-

tive is a key issue, defining different ISOPE
algorithms).

Step 2. Perform the model parameter estimation
(MPE) under the condition (6), yielding new
parameter values αi = αi(ci).

Step 3. Calculate the modifier λ(ci, αi) and solve
the modified model optimization problemMMOP
(4), yielding the solution ĉim. Set i := i+ 1 and
go to Step 1.

Step 4. Check the termination criterion. If not
satisfied then update the set-point, e. g. using
the formula ci+1 := ĉim – another formulae
also possible and used, see (Brdyś et al., 1987a;
Tatjewski and Roberts, 1987).

4. NEW STRUCTURE OF THE METHOD

The discussion presented in the proceeding sec-
tion is original – in previous papers on the sub-
ject formal derivation of the MMOP and the
ISOPE method was performed starting from nec-
essary optimality conditions of certain specially
formulated OCP with additional variables, see e.
g. (Brdyś et al., 1987a; Tatjewski and Roberts,
1987). Our approach is simpler, more intuitive and
gives deeper insight into the nature of the method.
Namely, it is evident from our development that
the only necessary source of the true optimal-
ity property of the ISOPE is the fundamental
equality (7), obtained due to the introduction of
the modifier term λ(ci, αi)Tc to the performance
function and due to the parameter estimation
condition (6). Introduction of the modifier term is
unavoidable, but the method can be redesigned to
the structure where the parameter estimation can
be performed without the condition (6) and even
not in every iteration. That will make the method
more natural and easier to implement. Observe



that repeating model parameter estimation prob-
lem (MPE) after adding a single new point to
the data record (last steady-state measurement)
is rather not very reasonable if the record con-
sists of many points. Therefore, the MPE has to
be then performed in fact mainly to satisfy the
condition (6) only. A way to avoid this will now
be proposed. The key idea is to introduce a model
shift parameter ai, being an internal calculation
parameter of the method, not visible in the model
parameter estimation problem.

Let us formulate, in place of MMOP (4), the
following modified model optimization problem,
called MMOP1 in what follows,

minimizec{qmod a(c, ci, w̃, α, ai) =
= Q(c, F (c, w̃, α) + ai)− λa(ci, α)T c}

subject to c ∈ C
(12)

with the following definition of the modifier
(comp. (5))

λa(ci, α)T = Q
′

y(c
i, F (ci, w̃, α) + ai)·

· [F ′c(ci, w̃, α)− (F∗)
′

c(c
i, w)] (13)

where
ai
def= F∗(ci, w)− F (ci, w̃, α) (14)

Now, if the MMOP1 problem is used instead of the
MMOP in the ISOPE algorithm structure, then
the discussion of the optimality can be performed
in the same way as in the previous section leading
to the same main result: a point satisfying neces-
sary optimality conditions of the original optimiz-
ing control problem (1) is the convergence limit
of the iterations. But, the parameter estimation
problem is now unconstrained. Moreover, param-
eter estimation is in fact not necessary at all,
although possible when reasonable. The ISOPE
iterations can consist of successive optimizations
of MMOP1 problems and set-points updates only.

The new, improved algorithm structure is as
follows:

Step 0. Given initial set point c0, set iteration
counter i := 0 and initialize algorithm internal
parameters.

Step 1. Apply set-point ci to the controlled
plant, measure the corresponding steady-state
outputs yi = F∗(ci, w), calculate the derivative
F
′

∗(c
i, w) (the technique to evaluate this deriva-

tive is a key issue, defining different ISOPE
algorithms).

(Step 2 – optional. Perform the model param-
eter estimation (adaptation) yielding new pa-
rameter values α.)

Step 3. Calculate the modifier λa(ci, α) (13) and
solve the modified model optimization problem
MMOP1 (12), yielding the solution ĉim.

Step 4. Check the termination criterion. If not
satisfied then update the set-point, e.g. using

the formula ci+1 := ĉim, another formulae also
possible and used. Set i := i+ 1, go to Step 1.

It should be noticed that now parameter estima-
tion and model based optimization are not inte-
grated, therefore the name ”ISOPE – Integrated
System Optimization and Parameter Estimation”
is not any longer adequate for the redesigned
method. The optimal properties of the method are
solely due to the modification of the model based
optimization, in fact introduced to obtain the per-
formance function gradient modification leading
to the fundamental equation (7). For the described
new formulation of the method the equation (7)
takes the following form

(qmod a)
′

c(c
i, ci, w̃, α, ai) = (q∗)

′

c(c
i, w) (15)

Therefore, the presented method could be better
described as, e.g., the modified gradient optimiz-
ing set-point control to emphasize the fact that
gradient modification is the clue of the approach.

The modification of the ISOPE proposed in this
paper is very basic, concerning formulations of
the modifier and the modified model optimization
problem. The modification does not influence the
way the plant input-output mapping derivative is
used and estimated. Therefore, this modification
can be applied to all ISOPE algorithms, as they
have been referenced in many places throughout
this paper. Moreover, theoretical analysis concern-
ing optimality and convergence given in (Brdyś et
al., 1987a) remains valid for the redesigned ISOPE
formulation proposed in this paper. The reason is
the fundamental equation (7) is the key for the
analysis, and it is certainly true.

It can easily be seen that the modified and stan-
dard ISOPE structures become identical when the
performance functionQ is additive with respect to
c and y and linear in y, i.e.,

Q(c, y) = Q̃(c) + bT y (16)

where b is a vector of coefficients. This follows
from the facts that the resulting additive term
bT ai does not influence optimization results and
that the derivative of Q with respect to y is not
dependent on y, therefore on ai too.

The paper is devoted to optimizing set-point con-
trol methods. However, the ISOPE algorithm can
also be applied as a powerful optimization method
(off-line) for problems with difficult nonlinear
equality constraints of the input-output type, see
e.g. (Tadej and Tatjewski, 2001). The original
nonlinear constraints play then the role of the
”true plant”, whereas their simplified versions are
considered in the modified model optimization
problems, solved iteratively within the ISOPE
structure. In this kind of applications the param-
eter estimation problem was rather artificial, now



it can be removed resulting in more natural and
efficient optimization algorithm.

5. CONCLUSIONS

A short review of the basics of the iterative ap-
proach to on-line set-point optimization under
uncertainty in plant models and disturbance es-
timates was first given in the paper. In particular,
the idea of the known ISOPE (Integrated System
Optimization and Parameter Estimation) method
was explained in a simple and original way, point-
ing out really key issues. As a result of this analy-
sis a different formulation of the Modified Model
Optimization Problem (MMOP), being a key ele-
ment of the approach, was proposed. This, in turn,
led to a simplification of the general ISOPE struc-
ture – the model parameter estimation problem is
not any longer constrained (by certain equality
constraints connected with the plant model out-
puts) and is even not required to be performed
at every set-point iteration. The new structure
is more efficient and practical in optimizing set-
point control (on-line set-point optimization). It
also results in more efficient and natural appli-
cations to off-line optimization of problems with
difficult nonlinear equality constraints of input-
output type. The proposed modifications can be
introduced in all ISOPE-type iterative algorithms,
which differ generally in the way the estimation
of derivatives of the plant input-output mapping
is performed, at subsequent set-points. References
concerning these algorithms are given and briefly
commented in the paper.
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