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Abstract: The problem of decentralized control is considered for a class of linear
time–varying large scale systems with uncertainties and external disturbances in the
interconnections. In the paper, the upper bounds of the uncertainties and external
disturbances are assumed to be unknown, and control inputs are represented by the
nonlinear functions satisfying the condition of the series nonlinearity. The adaptation
laws are proposed to estimate such unknown bounds, and by making use of the
updated values of these unknown bounds, a class of decentralized state feedback
controllers are constructed. It is shown that by employing the proposed decentralized
state feedback controllers, the solutions of the resulting adaptive closed–loop large
scale system can be guaranteed to be uniformly ultimately bounded.
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1. INTRODUCTION

It is well known that large scale dynamical sys-
tems are essential features of our modern society.
For instance, transportation systems, power sys-
tems, communication systems, economic systems,
and so on, can be considered as such a class of
systems. Generally, a large scale system can be
characterized by a large number of variables rep-
resenting system, a strong interaction between the
system variables, and a complex structure (see,
e.g. (Siljak, 1978), (Lunze, 1992)). In particular,
a large scale system is often considered as a set
of interconnected subsystems, and referred to as
large scale interconnected systems. The advantage
of this aspect in controller design is to reduce
complexity and this therefore allows the control
implementation to be feasible. Thus, the prob-
lem of decentralized control of large scale inter-
connected systems has been widely studied (see,

e.g. (Siljak, 1991), (Anderson, 1982), (Ikeda and
Siljak, 1980), and the references therein).

On the other hand, it is not avoidable to include
uncertain parameters and external disturbances
in the practical control systems due to modeling
errors, measurement errors, linearization approx-
imations, and so on. In particular, for large scale
interconnected systems, the essential uncertain-
ties and disturbances are represented by the inter-
connections among the subsystems. Therefore, the
problem of decentralized robust control of large
scale interconnected systems with significant un-
certainties has been also received considerable at-
tention of many researchers, and many approaches
to designing decentralized robust state (or output)
feedback controllers have been developed (see,
e.g. (Wang et al., 1989), (Chen, 1987), (Chen
et al., 1991), (Wu, 1996), (Wu, 1999b), and the
references therein).
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It is worth pointing out that a salient feature of
those schemes is that the decentralized state (or
output) feedback controllers explicitly depend on
the upper bounds of the uncertainties and exter-
nal disturbances. Therefore, for the decentralized
robust controller design problem, one has to as-
sume that the upper bounds of the uncertainties
and external disturbances are known. However,
in a number of practical control problems, such
bounds may be unknown, or be partially known.
In some cases, it may also be difficult to evaluate
the upper bounds of the uncertainties and exter-
nal disturbances. Thus, one must develop some
new controller design methods to relax this as-
sumption. For composite systems, some updating
laws to such unknown (or partially known) bounds
have been introduced to construct some types
of adaptive robust feedback controllers (see, e.g.
(Chen, 1992), (Choi and Kim, 1993), (Wu, 1999a),
(Wu, 2000), (Wu and Shigemaru, 1999), and the
references therein). However, few efforts are made
to consider the problem of decentralized feed-
back control for large scale interconnected sys-
tems with the unknown upper bounds of uncer-
tainties and external disturbances because of its
complexity. In (Chen, 1991), for example, a class
of saturation–type decentralized adaptive robust
state feedback controllers is proposed for a class
of uncertain large scale interconnected systems
with partially known bounds of uncertainties and
external disturbances to guarantee the uniform
ultimate boundedness of closed–loop large scale
systems. In (Tang et al., 2000), the decentralized
(adaptive) robust feedback controllers are pro-
posed for a class of mechanical systems described
by Euler–Lagrange equations and involving high–
order interconnections, which can guarantee the
uniform ultimate boundedness when the control
objective is to tracking a smooth desired trajec-
tory.

In this paper, we consider the problem of de-
centralized feedback control for a class of linear
time–varying large scale systems with uncertain-
ties and external disturbances in the interconnec-
tions. Here, the upper bounds of the uncertain-
ties and external disturbances are assumed to be
unknown, and control inputs are represented by
the nonlinear functions satisfying the condition
of the so–called series nonlinearity. For such a
class of uncertain large scale systems, we want
to develop some decentralized stabilizing state
feedback controllers. For this, we first propose
some adaptation laws to estimate the unknown
bounds of uncertainties and external disturbances.
Then, by making use of their updated values, we
construct a class of decentralized local state feed-
back controllers. We show that by employing the
proposed decentralized state feedback controllers,
the solutions of the resulting adaptive closed–

loop large scale system can be guaranteed to be
uniformly ultimately bounded.

2. PROBLEM FORMULATION

We consider an uncertain linear time–varying
large scale system S composed of N intercon-
nected subsystems Si, i = 1, 2, · · · , N , described
by the following differential equations:

dxi(t)
dt

= Ai(t)xi(t) +Bi(t)ui(t) (1)

where t ∈ R+ is the time, xi(t) ∈ Rni is the state
vector, and ui(t) ∈ Rmi is the input vector. Each
dynamical subsystem is interconnected as

ui(t) =
N∑
j=1

Aij(ζi, t)xj(t) + qi(νi, t) (2)

where i ∈ {1, 2, . . . , N}.
In (1) and (2), for each i ∈ {1, 2, . . . , N}, Ai(t),
Bi(t) are continuous matrices of appropriate di-
mensions, the matrices Aij(·) accounts for the
interconnection between the subsystems Si and
Sj , which is assumed to be continuous in all
their arguments, and the vector qi(·) represents
the external disturbances for the ith subsystem
Si, which is also assumed to be continuous in
all their arguments. Moreover, the uncertain pa-
rameters (ζi, νi) ∈ Ψi ⊂ Rli are Lebesgue mea-
surable and take values in a known compact
bounding set Ωi. In addition, x(t) ∈ Rn denotes[
x�1 (t) x�2 (t) · · · x�

N
(t)

]�
, where n = n1 + n2 +

· · · + n
N

.

For this class of input–interconnected large scale
dynamical systems with the uncertainties and ex-
ternal disturbances in the interconnections, we
introduce a decentralized local state feedback con-
troller ūi(t) given by

ūi(t) = pi(xi, t) (3)

for each subsystem which modifies (2) to

ui(t) = Φi (ūi(t)) + qi(νi, t)

+
N∑
j=1

Aij(ζi, t)xj(t) (4)

where pi(·) : Rni × R → Rmi is a continuous
function, and the control input nonlinearity is
represented by the continuous function Φi (ūi).

Now, the main objective of this paper is to syn-
thesize the decentralized local state feedback con-
troller ūi(t) given in (3) such that the large scale
system, described by (1) and (4), is stable in the



presence of the uncertainties and external distur-
bances in the interconnections.

Assumption 2.1. All pairs {Ai(·), Bi(·)} are
uniformly completely controllable.

Assumption 2.2. The series nonlinearity de-
scribed by Φi(·) : Rmi → Rmi is any continuous
function satisfying the following inequality:

γ0
i ū

�
i ūi ≤ ū�i Φi (ūi) ≤ γ∗i ū�i ūi,∀ūi ∈ Rmi (5)

where γ0
i and γ∗i are two positive constants.

Remark 2.1. The series nonlinearity can well
capture the inexact behaviour of an actuator.
In general, γ∗i is referred to as the gain margin
and γ0

i as the gain reduction tolerance. It is
well known (Anderson and Moore, 1971), that
the optimal state feedback control law, derived
from an optimal linear quadratic problem, can
tolerate an infinite increase in gain and 50% gain
reduction.

For convenience, we now introduce the following
notations which represent the bounds of the un-
certainties.

ρij(t) := max
ζi

∥∥Aij(ζi, t)
∥∥

ϕi(t) := max
νi

∥∥qi(νi, t)∥∥
where ρij(t) and ϕi(t) are assumed to be contin-
uous and bounded for any t ∈ R+.

Remark 2.2. It is well known that the de-
centralized stabilizing state feedback controllers
proposed in the control literature for the large
scale system described by (1) and (4) are based
on the fact that the upper bounds of the uncer-
tainties and external disturbances in the intercon-
nections are known. That is, ρij(t) and ϕi(t) are
assumed to be the known continuous and bounded
functions, and the proposed decentralized feed-
back control laws include such bounds ρij(t) and
ϕi(t). However, in a number of practical control
problems, such bounds may be unknown, or it is
difficult to evaluate them. In this paper, we will
propose a class of decentralized adaptive robust
state feedback controllers for such uncertain large
scale interconnected systems.

3. MAIN RESULTS

Since the bounds ρij(t) and ϕi(t) have been as-
sumed to be continuous and bounded for any
t ∈ R+, we can suppose that there exist some
positive constants ρ∗ij and ϕ∗i , defined as

ρ∗ij := max
{
ρij(t) : t ∈ R+

}
(6a)

ϕ∗i := max
{
ϕi(t) : t ∈ R+

}
(6b)

Here, it is worth pointing out that the constants
ρ∗ij and and ϕ∗i , i, j = 1, 2, . . . , N , are unknown.
Therefore, such unknown bounds can not be di-
rectly employed to construct decentralized local
state feedback controllers.

Without loss of generality, we also introduce the
following definition:

ψ∗
i :=

N∑
j=1

(
ρ∗ij

)2
, i = 1, 2, . . . , N

where ψ∗
i is still obviously unknown positive

constant.

It follows from Assumption 2.1 that for any sym-
metric positive definite matrix Qi ∈ Rni×ni , and
any positive constant γ0

i , the matrix Riccati equa-
tion of the form

dPi(t)
dt

+A�
i (t)Pi(t) + Pi(t)Ai(t)

−γ0
i Pi(t)Bi(t)B�

i (t)Pi(t) = −Qi (7)

has a solution which satisfies

αi1Ini ≤ Pi(t) ≤ αi2Ini (8)

for all t ∈ R+, where αi1 and αi2 are positive
numbers.

Thus, for the large scale system described by (1)
and (4) we propose the following decentralized
adaptive robust state feedback controllers:

ūi(t) = − 1
2
ki(t)B�

i (t)Pi(t)xi(t) (9a)

where the decentralized control gain function ki(t)
is given by

ki(t) = 1 +
(
γ0
i

)−1
(
δ2i ψ̂i(t) + ρ2i ϕ̂

2
i (t)

)
(9b)

and where for any i ∈ {1, 2, . . . , N}, Pi(t) ∈
Rni×ni is the solution of the Riccati equation
described by (7), δi and ρi are positive con-
stants, and δi is chosen such that for any i ∈
{1, 2, . . . , N},

λmin(Qi) − δ−2N > 0 (9c)

where δ := min{δi, i = 1, 2, . . . , N}, and λmin(·)
and λmax(·) denote the minimum and maximum
eigenvalues of the matrix “·”, respectively.

In particular, for any i ∈ {1, 2, . . . , N}, ψ̂i(·) and
ϕ̂i(·) in (9) are respectively the estimates of the
unknown ψ∗

i and ϕ∗i , which are updated by the
following adaptive laws:

dψ̂i(t)
dt

=−σi1γiψ̂i(t)



+δ2i γi
∥∥B�

i (t)Pi(t)xi(t)
∥∥2

(10a)
dϕ̂i(t)
dt

=−σi2miϕ̂i(t)

+mi

∥∥B�
i (t)Pi(t)xi(t)

∥∥ (10b)

where σi1, σi2, γi, and mi are any positive
constants, and ψ̂i(t0) and ϕ̂i(t0) is finite.

Let ψ̂(t) ∈ RN and ϕ̂(t) ∈ RN be defined by

ψ̂(t) :=
[
ψ̂1(t) ψ̂2(t) · · · ψ̂

N
(t)

]�
ϕ̂(t) :=

[
ϕ̂1(t) ϕ̂2(t) · · · ϕ̂

N
(t)

]�
For each subsystem, applying the decentralized
state feedback controller given in (9) to (1) and
(4) yields the closed–loop subsystem Ŝi, i ∈
{1, 2, . . . , N}, of the form:

dxi(t)
dt

= Ai(t)xi(t) +Bi(t)
[
Φi (ūi(t))

+qi(νi, t) +
N∑
j=1

Aij(ζi, t)xj(t)
]

(11)

where the decentralized control law ūi(t) is given
in (9).

On the other hand, letting

ψ̃i(t) = ψ̂i(t) − ψ∗
i , ϕ̃i(t) = ϕ̂i(t) − ϕ∗i

we can rewrite (10) as the error system:

dψ̃i(t)
dt

=−σi1γiψ̃i(t) − σi1γiψ∗
i

+δ2i γi
∥∥B�

i (t)Pi(t)xi(t)
∥∥2

(12a)

dϕ̃i(t)
dt

=−σi2miϕ̃i(t) − σi2miϕ
∗
i

+γi
∥∥B�

i (t)Pi(t)xi(t)
∥∥ (12b)

Here, ψ̃(t) ∈ RN and ϕ̃(t) ∈ RN denote

ψ̃(t) :=
[
ψ̃1(t) ψ̃2(t) · · · ψ̃

N
(t)

]�
ϕ̃(t) :=

[
ϕ̃1(t) ϕ̃2(t) · · · ϕ̃

N
(t)

]�
In the following, by (x, ψ̃, ϕ̃)(t) we denote a so-
lution of the closed–loop large scale system and
the error system. Then, the following theorem can
be obtained which shows the uniform ultimate
boundedness of the closed–loop large scale system
described by (11) and (12).

Theorem 3.1. Consider the adaptive closed–
loop large scale dynamical system described by
(11) and (12), which satisfies Assumption 2.1
and Assumption 2.2. Then, the solutions (x, ψ̃, ϕ̃)
(t; t0, x(t0), ψ̃(t0), ϕ̃(t0)) of the closed-loop large
scale system described by (11) and the error

system described by (12) are uniformly ultimately
bounded in the presence of the uncertainties and
external disturbances in the interconnections.

Proof: We first define for (11) and (12) a Lyapunov
function candidate as follows.

V (x, ψ̃, ϕ̃) =
N∑
i=1

x�i (t)Pi(t)xi(t)

+
1
2
ψ̃�(t)Γ−1ψ̃(t) + ϕ̃�(t)M−1ϕ̃(t) (13)

where for each i ∈ {1, 2, . . . , N}, Pi(t) is the
solution of Riccati differential equation (7), and
Γ−1 ∈ RN×N and M−1 ∈ RN×N are positive
definite matrices which are respectively defined by

Γ−1 := diag
{
γ−1
1 , γ

−1
2 , . . . , γ

−1
N

}
M−1 := diag

{
m−1

1 , m
−1
2 , . . . , m

−1
N

}

Let (x(t), ψ̃(t), ϕ̃(t)) be the solutions of closed–
loop large scale system (11) and error system
(12) for t ≥ t0. Then by taking the derivative of
V (·) along the trajectories of (11) and (12) it is
obtained that

dV (x, ψ̃, ϕ̃)
dt

=
N∑
i=1

{
x�i (t)

[
dPi(t)
dt

+A�
i (t)Pi(t) + Pi(t)Ai(t)

]
xi(t)

+2x�i (t)Pi(t)Bi(t)Φi (ūi(t))

+2x�i (t)Pi(t)Bi(t)
N∑
j=1

Aij(ζi, t)xj(t)

+2x�i (t)Pi(t)Bi(t)qi(νi, t)
}

+ψ̃�(t)Γ−1 dψ̃(t)
dt

+ 2ϕ̃�(t)M−1 dϕ̃(t)
dt

(14)

From (5) and (9) we can obtain that

2x�i (t)Pi(t)Bi(t)Φi (ūi(t))

≤−γ0
i ki(t)

∥∥B�
i (t)Pi(t)xi(t)

∥∥2
(15)

Thus, substituting (15) into (14) yields

dV (x, ψ̃, ϕ̃)
dt

≤
N∑
i=1

{
−λmin (Qi) ‖xi(t)‖2

−
(
δ2i ψ̂i(t) + ρ2i ϕ̂

2
i (t)

) ∥∥B�
i (t)Pi(t)xi(t)

∥∥2

+2
N∑
j=1

ρ∗ij ‖xj(t)‖
∥∥B�

i (t)Pi(t)xi(t)
∥∥

+2ϕ∗i
∥∥B�

i (t)Pi(t)xi(t)
∥∥}



+ψ̃�(t)Γ−1 dψ̃(t)
dt

+ 2ϕ̃�(t)M−1 dϕ̃(t)
dt

(16)

Notice that the facts that for any i ∈ {1, 2, . . . , N},

ψ̂i(t) = ψ̃i(t) + ψ∗
i , ϕ̂i(t) = ϕ̃i(t) + ϕ∗i

where

ψ∗
i :=

N∑
j=1

(
ρ∗ij

)2
, i = 1, 2, . . . , N

it follows from (16) that

dV (x, ψ̃)
dt

≤ −
N∑
i=1

λmin (Qi) ‖xi(t)‖2

+
N∑
i=1

N∑
j=1

δ−2
i ‖xj(t)‖2

−
N∑
i=1

δ2i ψ̃i(t)
∥∥B�

i (t)Pi(t)xi(t)
∥∥2

−
N∑
i=1

{
ρ2i ϕ̂

2
i

∥∥B�
i (t)Pi(t)xi(t)

∥∥2

−2ϕ∗i
∥∥B�

i (t)Pi(t)xi(t)
∥∥}

+
N∑
i=1

{
γ−1
i ψ̃i(t)

dψ̃i
dt

+ 2m−1
i ϕ̃i(t)

dϕ̃i
dt

}

=−
N∑
i=1

{
ηi ‖xi‖2 +

1
2
σi1ψ̃

2
i (t) + σi2ϕ̃2

i (t)
}

−
N∑
i=1

{
ρ2i ϕ̂

2
i (t)

∥∥B�
i (t)Pi(t)xi(t)

∥∥2

−2ϕ̂i(t)
∥∥B�

i (t)Pi(t)xi(t)
∥∥}

−
N∑
i=1

{ 1
2
σi1ψ̃

2
i (t) + σi1ψ̃i(t)ψ∗

i

}

−
N∑
i=1

{
σi2ϕ̃

2
i (t) + 2σi2ϕ̃i(t)ϕ∗i

}

≤−
{ N∑

i=1

ηi ‖xi(t)‖2 +
1
2
ψ̃�(t)Σ1ψ̃(t)

+ ϕ̃�(t)Σ2ϕ̃(t)
}

+ ε (17)

where
ηi := λmin (Qi) − δ−2N > 0, i = 1, 2, . . . , N

and where

ε :=
N∑
i=1

{
ρ−2
i +

1
2
σi1 |ψ∗

i |
2+σi2 |ϕ∗i |

2

}
(18a)

Σ1 := diag
{
σ11, σ21, · · · , σN1

}
(18b)

Σ2 := diag
{
σ12, σ22, · · · , σN2

}
(18c)

On the other hand, since Pi(t) is symmetric pos-
itive definite, it is obtained from the Rayleigh
principle that for any t ∈ R+,

λmin(Pi(t))‖xi(t)‖2 ≤ x�(t)P (t)x(t)

≤ λmax(Pi(t))‖xi(t)‖2 (19)

Then, in terms of (8) we can know that there
exists a constant ᾱi, i ∈ {1, 2, . . . , N}, such that
for any t ∈ R+,

λmax(Pi(t)) ≤ ᾱi (20)

Thus, from (17) and (20) we obtain

dV (x, ψ̃, ϕ̃)
dt

≤ −µ̃V (x, ψ̃, ϕ̃) + ε (21)

where
η̄ := min

{
η̄i = ηiᾱ−1

i , i = 1, 2, . . . , N
}

and where

µ̃ := min

{
η̄, λ−1

min (Γ)λmin (Σ1) , λ−1
min (M)λmin (Σ2)

}

From (21), it is obvious that V (x, ψ̃, ϕ̃) decreases
monotonically along any solution of closed–loop
large scale system (11) and error system (12) until
the solution reaches the compact set

Ωf :=
{

(x, ψ̃, ϕ̃) : V (x, ψ̃, ϕ̃) ≤ Vf
}

(22)

where
Vf := µ̃−1ε (23)

Therefore, it can be concluded that the solution
(x, ψ̃, ϕ̃) (t; t0, x(t0), ψ̃(t0, ϕ̃(t0)) of the closed-loop
large scale system described by (11) and the error
system described by (12) are uniformly ultimately
bounded with respect to the bound Vf given by
(23).

Remark 3.1. It is worth pointing out that the
parameters σi1, σi2, and ρi will be selected by the
system designer. Therefore, by properly choosing
these parameters, we can guarantee to obtain a
better stability results for the adaptive large scale
systems. In fact, it can be known from (18a)
that by decreasing the values σi1 and σi2, and
by increasing the values ρi sufficiently, one can
obtain the upper bound on the steady–state x(t)
and error (ψ̃(t), ϕ̃(t)) as small as desired. That
is, the system designer can tune the size of the
residual set by adjusting properly this parameters
which are introduced in the adaptation and the
control laws.

Remark 3.2. In the paper, we have constructed
a class of decentralized adaptive robust state feed-
back controllers. However, it is not difficult to
extend the results obtained in this paper to the



problem of decentralized output feedback stabi-
lization under some assumptions such as the posi-
tive realness, and minimum phase and nonsingular
high–frequency gain for each isolated subsystem.
In fact, on the basis of such assumptions, we can
easily construct a class of decentralized adaptive
robust output feedback controllers, in terms of the
method proposed in this paper.

Remark 3.3. In order to illustrate the validity
of the results obtained in the paper, a numerical
example is also given, and the simulation is carried
out. It is known from the results of the simulation
that the proposed decentralized adaptive robust
state feedback controllers stabilize indeed the un-
certain large scale systems in the sense of uniform
ultimate boundedness. (The details of the illus-
trative numerical example and the figures of the
simulation will be displayed in the presentation.)

4. CONCLUDING REMARKS

The problem of decentralized feedback control
for a class of time–varying large scale systems
with uncertainties and external disturbances in
the interconnections has been discussed. Here, the
upper bounds of the uncertainties and external
disturbances are assumed to be unknown, and
control inputs have been represented by the non-
linear functions satisfying the condition of the so–
called series nonlinearity. For such a class of uncer-
tain linear time–varying large scale interconnected
systems, we have proposed some adaptation laws
to estimate the unknown bounds.Furthermore, by
making use of the updated values of these un-
known bounds we have constructed a class of
decentralized state feedback controllers. We have
also shown that the solutions of the adaptive
closed–loop large scale system resulting from the
decentralized controllers can be guaranteed to be
uniformly ultimately bounded in the presence of
uncertainties and external disturbances in the in-
terconnections.
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