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1. INTRODUCTION 
 

Piecewise linear systems have been a subject of 
research in the systems and control community for 
some time, see for example (Imura and van der 
Schaft, 2000; Johansson and Rantzer, 1998; Rantzer 
ans Johansson, 2000; Hassibi and Boyd, 1998; 
Wicks, et al., 1994; Pettit and Wellstead, 1995; 
Kantner, 1997; Yfoulis, et al., 1998; Banks and 
Khathur, 1989; Sontag, 1981; Chua and Deng, 1986; 
Chua and Ying, 1983). In fact, the piecewise linear 
systems constitute a special class of hybrid systems 
(Yfoulis, et al., 1998) and arise often in practical 
control systems when piecewise linear components 
are encountered. These components include dead-
zone, saturation, relays, and hysteresis. In addition, 
many other classes of nonlinear systems can also be 
approximated by the piecewise linear systems. Thus 
the piecewise linear systems provide a powerful 
means of analysis and design for nonlinear control 
systems.  
 
A number of significant results have been obtained on 
analysis and controller design of such piecewise 
continuous time linear systems during the last few 
years. For example, the authors in Imura and van der 
Schaft (2000) studied a basic issue, that is, the well-
posedness of piecewise linear systems. Necessary and 
sufficient conditions for bimodal systems to be well-
posed have been derived, and the extension to the 

multimodal case has also been discussed. The authors 
in Johansson and Rantzer (1998) and Rantzer ans 
Johansson (2000) presented results on stability and 
optimal performance analysis for piecewise linear 
systems based on a piecewise continuous Lyapunov 
function. It has been shown that lower bounds, as 
well as upper bounds, on the optimal control cost can 
be obtained by semidefinite programming, and the 
framework of piecewise linear systems can be used to 
analyze smooth nonlinear systems with arbitrary 
accuracy. The authors in Hassibi and Boyd (1998) 
discussed stability analysis and controller design of 
piecewise linear systems which may involve multiple 
equilibrium points based on a common quadratic 
Lyapunov function and a piecewise quadratic 
Lyapunov function. It has been shown that stability 
and performance analysis can be cast as convex 
optimization problems. A controller design method 
based on a common quadratic Lyapunov function and 
linear matrix inequalities has been proposed. 
 
However, there is little result on stability analysis of 
piecewise discrete time systems using piecewise 
Lyapunov functions in the open literature. The 
difficulty seems to be due to the fact that the state of 
the discrete time system may never pass through the 
region boundaries; instead the state most likely jumps 
from one region to another. In such a case, the 
boundary information, like the matrices F’s in 
Johansson and Rantzer (1998) and Rantzer ans 

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

mailto:megfeng@cityu.edu.hk


 

Johansson (2000), cannot be used to characterize the 
state transition from one region to another as dealt 
with in the case of continuous time systems. More 
specifically, it may not be helpful to construct a 
piecewise Lyapunov function that is continuous 
across boundaries for the discrete time systems to 
analyze stability of the system as in Johansson and 
Rantzer (1998) and Rantzer ans Johansson (2000) for 
the continuous time systems. Nevertheless, it may 
also be unnecessary to require the piecewise 
Lyapunov function to be continuous across 
boundaries for the discrete time piecewise linear 
systems since the state of such systems may never 
pass through the boundaries. In a recent paper (Feng, 
2001), we propose a method for stability analysis of 
the piecewise discrete time linear systems by 
constructing a novel piecewise Lyapunov function. 
This function is guaranteed to be decreasing when the 
state of the system jumps from one region to another. 
It is shown that the piecewise Lyapunov function can 
be constructed by solving a set of linear matrix 
inequalities if it exists. The work presented in that 
paper can be considered as an extension of the work 
for the piecewise continuous time systems in Imura 
and van der Schaft (2000) and Johansson and Rantzer 
(1998) to their discrete time counterparts. 
 
In this paper, we will use the stability results 
presented in Feng (2001) to synthesize a stable 
controller for the piecewise discrete time linear 
systems. It will be shown that the resulting closed 
loop system is globally stable and the controller can 
be obtained by solving a set of linear matrix 
inequalities. 
  
The rest of the paper is organised as follows. Section 
2 introduces the piecewise linear system model and 
the stability theorem. Section 3 presents a controller 
design method for such systems. Finally, conclusions 
are given in section 4. 
 

 
2. PIECEWISE UNCERTAIN LINEAR SYSTEM 

MODEL AND STABILITY THEOREM 
 
Consider autonomous piecewise uncertain discrete 
time linear systems of the form  

llllll aatuBB)x(t)AA1)x(t ∆++∆++∆+=+ )()((
for lSx∈ , m,...,l 2,1= ,      (2.1) 

where n
LllS ℜ⊆∈}{  denotes a partition of the state 

space into a number of closed polyhedral subspaces, 
L is the index set of subspaces, x(t) nℜ∈  the system 
state variables, )a,B,(A lll   the l-th local nominal 

model of the system, la  the offset term, and 
)a,B,A( lll ∆∆∆  are the uncertainties of the 

corresponding matrices. For the definition of state 
trajectory and solution to the piecewise linear system 
(2.1) please refer to Imura and van der Schaft (2000), 

Johansson and Rantzer (1998), and Rantzer ans 
Johansson (2000) for details. Here we assume that 
given any initial condition 0)0( xx = , the difference 
equation (2.1) has a unique solution for all 0>t . We 
also assume that when the state of the system transits 
from the region lS  to jS  at the time t, the dynamics 
of the system is governed by the dynamics of the 
local model of lS  at that time. For future use, we also 
define a set Ω  that represents all possible transitions 
from one region to another, that is, 
 },)1(,)(|,{: ljStxStxjl jl ≠∈+∈=Ω . 
 
Remark 2.1: It is noted that the system models 
defined in (2.1) are in fact affine systems instead of 
linear systems. They include an additional offset 
term. In this paper, the notation of linear systems has 
been abused to represent the affine systems. 
 
Define LL ⊆0  as the set of indexes for subspaces 
that contain the origin and LL ⊆1  the set of indexes 
for the subspaces that do not contain the origin. It is 
assumed that 0=la  for all 0Ll∈ . 
 
For convenient notation, we introduce 

 







=

10
ll

l
aA

A , 







=

0
l

l
B

B , 







=

1
x

x ,  (2.2a) 








 ∆∆
=∆

00
ll

l
aA

A , 






∆
=∆

0
l

l
B

B . (2.2b) 

 
Then using this notation, the system model (2.1) can 
be expressed as 

)()(( tuBB(t)x)AA1)(tx llll ∆++∆+=+ ,

lSx(t)∈           (2.3) 
 
For purpose of stability analysis and subsequent use, 
we introduce the following upper bounds for the 
uncertainty term of the system (2.1), 

][][][][ lalA
T

lalAl
T

l EEEEaAaA ≤∆∆∆∆ , 
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As shown in Johansson and Rantzer (1998), we can 
define the following matrices E ’s for the so-called 
S-procedure. It is noted (Johansson and Rantzer, 
1998; Rantzer ans Johansson, 2000) that these 
matrices E ’s can be constructed for each cell since 
they are polyhedra such that 
  0≥xEl        (2.5) 
where ][ lll eEE =  with 0=le  for 0Ll∈ . It 
should be noted that the above vector inequality 
means that each entry of the vector is nonnegative. 



 

Then we are ready to present the following stability 
result of the paper (Feng, 2001). 
 
Lemma 2.1 (Feng, 2001): Consider the piecewise 
linear system without uncertainties (2.1) with 0≡u . 
If there exist symmetric positive definite matrices 

10 ,,, LlPLlP ll ∈∈ , symmetric matrices ll WU ,  and 

ljQ  such that ll WU ,  and ljQ  have nonnegative 
entries, and the following LMIs are satisfied, 
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where we define ]0[]0[ 11 ××××= nnnj
T

nnnj IPIP  

for 0Lj∈  in (2.11), and 
T

nnnjnnnj IPIP ]0[]0[~
11 ××××=  for 1Lj∈  in 

(2.12), then the piecewise linear system is globally 
exponentially stable, that is, x(t) tends to the origin 
exponentially for every trajectory in the state space. 
 
The above conditions are linear matrix inequalities in 
the variables llll WUPP ,,, , and ljQ . A solution to 
those inequalities ensures there exists a Lyapunov 
function for the system. The LMI in (3.6) or (3.8) for 
each region guarantees that the function is positive 
and the LMI in (3.7) or (3.9) guarantees that the 
function decreases along all system trajectories in 
each region. The LMIs (3.10)-(3.12) guarantee that 
the function is decreasing when the state transits from 
one region to another. The terms involving 

llll WUEE ,,, , and ljQ  are related to the S-
procedure to reduce the conservatism of those 
inequalities. 
 
Remark 2.2: The stability test of the piecewise linear 
system in eqn. (3.6)-(3.12) can be easily facilitated by 
a commercially available software package Matlab 
LMI toolbox (Boyd et al., 1994; Gahinet et al., 
1995). 
 
Remark 2.3: The set Ω  can be usually determined by 
all possible combinations of the adjacent or non-
adjacent regions. If it is possible for the transitions 
happen between all regions, then 2L=Ω , which is 
defined as a set of },,|,{ ljLjljl ≠∈ . 
 
Then based on the lemma 2.1, we can have the 
following stability result. 
 

Theorem 2.1: Consider the piecewise uncertain linear 
system (2.1) with 0≡u . If there exist a set of 
positive constants mll ,,2,1, =ε , a set of 
symmetric matrcies 10 ,,, LlPLlP ll ∈∈ , symmetric 
matrices ll WU ,  and ljQ  such that ll WU ,  and ljQ  
have nonnegeative entries, and the following LMIs 
are satisfied, 
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where we define ]0[]0[ 11 ××××= nnnj
T

nnnj IPIP  

for 0Lj∈  in (2.18), and 
T

nnnjnnnj IPIP ]0[]0[ˆ
11 ××××=  for 1Lj∈  in 

(2.19), then the piecewise uncertain linear system is 
globally exponentially stable, that is, x(t) tends to 
zero exponentially for every continuous piecewise 
trajectory in the state space. 
 
Proof: Consider the following Lyapunov function 
candidate V(t), 
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or in a more compact form,  
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T ∈∈= ,,)( . (2.20b) 



 

It is obvious from (2.20) that in an open 
neighborhood of the origin there exists a constant 

0>β such that 

  2||||)( xtV β≤ , 
since the affine term does not appear in this case. 
Moreover, (2.13) and (2.15) imply that there exists a 
constant 0>α such that 
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for lSx∈ . Thus we have, 
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Using the lemma A.1, we have 
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Then by the Schur complement formula, it follows 
that (2.14) and (2.16)-(2.19) imply 
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Thus it follows from (2.22) and (2.23) that 
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which in turn implies that there exists a constant 
0>ρ such that 
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Then along trajectories of the system, we have 
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Therefore, the desired result follows directly from 
(2.21) and (2.25) based on the standard Lyapunov 
theory.          ∇∇   
 
 

3. CONTROLLER SYNTHESIS OF PIECEWISE 
LINEAR SYSTEMS 

 
In this section, we will address the controller 
synthesis problem for the discrete time piecewise 
linear systems introduced in the last section. Consider 
the piecewise system model (2.1) on every subspace, 

llllll aa)u(t)B(B)x(t)A(A1)x(t ∆++∆++∆+=+ , 

lSx(t)∈          (3.1) 
or in more compact form, 

)u(t)BB((t)x)AA(1)(tx llll ∆++∆+=+ , lSx(t)∈  
           (3.2) 
 
For the stabilization of the system (3.1) or 
equivalently (3.2), we consider the following 
piecewise continuous controller as 
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With the control law (3.3), the global closed loop 
system is obtained by combining the system (3.2) and 
the controller (3.3), and can be described by the 
following equation, 
 )()1( txAtx cl=+ , lSx(t)∈    (3.4) 
where 
 lllllcl KBBAAA )( ∆++∆+= .    (3.5) 
 
Then we have the following result. 
 
Theorem 3.1: The system (3.4) is globally stable, 
if there exist a set of positive constants 

mll ,,2,1, =ε , a set of symmetric matrcies 

10 ,,, LlPLlP ll ∈∈ , symmetric matrices ll WU ,  and 

ljQ  such that ll WU ,  and ljQ  have nonnegeative 
entries, and the following LMIs are satisfied, 
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and 0>α  is any constant large enough such that the 
matrices )( ll RR  are positive definte.  
Moreover, the controller gain for each local 
subsystem is given by 
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where 11 )(~ −− −= IPP lll ε , and 11 )(

~ −− −= IPP lll ε . 
Proof:      Based on the result in Theorem 2.2, we 
learn that the system (3.4) is globally stable if there 
exist a set of symmetric matrices 10 ,,, LlPLlP ll ∈∈ , 
and symmetric matrices ll WU ,  and ljQ  such that 

ll WU ,  and ljQ  have nonnegeative entries, lP  and 

lP  satisfy the inequality (3.6) and (3.8) respectively, 
and the following inequalities are satisfied,  
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We will first show that the inequality (3.7) implies 
(3.15). Using Lemma A.1, the left hand side of 
inequality (3.15) can be expressed as, 
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Substituting (3.21) into (3.20) and using the matrix 
inversion lemma, one has 
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It then can be easily seen that the following 
inequality, 
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implies (3.15). Using Schur complement formulas, it 
is easily shown that the inequality (3.23) is in turn 
equivalent to the linear matrix inequality (3.7). Thus, 
we have shown that the inequality (3.7) implies 
(3.15). Following the above procedure, it can also be 
shown that the inequality (3.9)-(3.12) implies the 
inequality (3.16)-(3.19) respectively. Therefore, it 



 

can be concluded from the Theorem 2.2 that the 
closed loop control system is globally stable and thus 
the proof is completed.      ∇∇  
 
Based on the above theorem, the following algorithm 
can be developed. 
 
Algorithm 1: 
 
Step 1.  Set mll ...,,2,1, =ε  to small constants, say 

mll ...,,2,1,1 ==ε . 
Step 2.  Solve the linear matrix inequalities (3.6)-
(3.12) for a set of positive definite matrices 

10 ,,, LlPLlP ll ∈∈ . This can be facilitated by using 
the Matlab LMI toolbox (Gahinet et al., 1995).  
Step 3. If the solutions are found, the controller 
parameters can be obtained by (3.13) and (3.14), and 
then stop. Otherwise, set 2/ll εε = , for those 
inequalities having no solution, and check whether 

mll ...,,2,1, =ε , are greater than some given threshold. 
If it is the case, then go back to step 2. Otherwise, 
claim the present controller design fails. 
 
 

4. CONCLUSIONS 
 
In this paper, a new stability result has been 
developed for piecewise uncertain discrete time linear 
systems based on a piecewise Lyapunov function, and 
then a stabilization controller design method has also 
been developed. It has been shown that the stability 
test can be accomplished by checking a set of LMIs 
and the controller gains can also be determined by 
solving a set of LMIs. Finally a constructive 
algorithm for the controller design is also given. 
 

APPENDIX 
 
Lemma A.1(Garcia et al., 1994): Let A and E be 
matrices of appropriate dimensions, and P be a 
positive-definite symmetric matrix satisfying 

  0,01 >>− ε
ε

PI , 

then 

EEPAPIPAPEEPAEPEA TTTTT

εε
1)1( 1 +−≤++ − . 
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