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Abstract: First we show that continuous piecewise-affine systems are equivalent to max-min-
plus-scaling systems (i.e., systems that can be modeled using maximization, minimization,
addition and scalar multiplication). Next, we consider model predictive control for these
systems. In general, this leads to nonlinear non-convex optimization problems. However, we
present a method based on canonical forms for max-min-plus-scaling functions to solve these
optimization problems in a more efficient way than by just applying nonlinear optimization
as was done in previous research.
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1. INTRODUCTION

In our previous work (De Schutter and van den Boom,
2001b) we have extended the model predictive control
(MPC) framework to max-min-plus-scaling (MMPS)
systems. MMPS systems are systems that can be mod-
eled using maximization, minimization, addition and
scalar multiplication. Typical examples of MMPS sys-
tems in a discrete event systems context are digital
circuits, computer networks, telecommunication net-
works, and manufacturing plants. In (De Schutter and
van den Boom, 2000) we have shown that this class
encompasses several other classes of discrete event
systems such as max-plus-linear systems, max-plus-
bilinear systems, max-plus-polynomial systems, and
max-min systems. So MMPS systems can be consid-
ered as a generalized framework for several classes of
discrete event systems. Moreover, recently a link be-
tween constrained MMPS systems and hybrid systems
— among which piecewise-affine (PWA) systems —
has been established (Heemels et al., 2001a; Heemels
et al., 2001b).

In this paper we will present a direct connection be-
tween continuous PWA systems and MMPS systems
(without the need to introduce additional auxiliary
variables or extra constraints as was done in (Heemels

et al., 2001a; Heemels et al., 2001b)). Next, we use
the link between PWA systems and MMPS systems to
present a new approach to MPC for continuous PWA
systems. In order to compute an MPC controller for a
PWA system or for an MMPS system we have to solve
a nonlinear non-convex optimization problem at each
sample step. We propose an optimization algorithm
that is based on canonical forms for MMPS functions
and that is similar to the cutting-plane algorithm for
convex optimization problems. The proposed algo-
rithm consists in solving several linear programming
problems and is more efficient than the algorithms
used in (De Schutter and van den Boom, 2001b),
which are based on multi-start nonlinear local opti-
mization (sequential quadratic programming) or on
the extended linear complementarity problem.

This paper is organized as follows. In Section 2 we
present MMPS functions and systems, and PWA func-
tion and systems. We also discuss the connection be-
tween continuous PWA systems and (unconstrained)
MMPS systems. Next, we consider canonical forms
for MMPS functions in Section 3. Section 4 briefly
recapitulates our previous results in connection with
MPC for MMPS systems. Due to the link between
PWA and MMPS systems, this approach can also be
used for continuous PWA systems. Finally, we present

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



an efficient algorithm to solve the MMPS-MPC and
PWA-MPC optimization problems.

2. CONTINUOUS PWA SYSTEMS AND MMPS
SYSTEMS

2.1 MMPS functions and systems

An MMPS function f of the variables x1, . . . ,xn is
defined by the recursive grammar 1

f := xi|α|max( fk, fl)|min( fk, fl)| fk + fl |β fk , (1)

with i ∈ {1, . . . ,n}, α,β ∈ R, and where fk and fl are
again MMPS functions.

Now we consider systems that can be described by
state space equations of the following form:

x(k) = Mx(x(k−1),u(k)) (2)

y(k) = My(x(k),u(k)) , (3)

where Mx and My are vector-valued MMPS func-
tions. Systems the behavior of which can be described
by a model of the form (2)–(3) will be called MMPS
systems.

2.2 PWA functions and systems

A function f : R
n →R is said to be a continuous PWA

function if and only if the following conditions hold
(Chua and Deng, 1988):

(1) The domain space R
n is divided into a finite

number of polyhedral regions R(1), . . . ,R(N).

(2) For each i ∈ {1, . . . ,N}, f can be expressed as

f (x) = αααT
(i)x+β(i) (4)

for any x ∈ R(i) with ααα(i) ∈ R
n and β(i) ∈ R.

(3) f is continuous on any boundary between two
regions.

For more information on PWA functions we refer to
(Chua and Deng, 1988; Leenaerts and van Bokhoven,
1998) and the references therein.

A PWA system is a system of the form

x(k) = Px(x(k−1),u(k)) (5)

y(k) = Py(x(k),u(k)) , (6)

where Px and Py are vector-valued PWA functions.
A model of the form (5)–(6) is called a PWA model.
If Px and Py are continuous, then we say that the
model is a continuous PWA model.

Note that continuous PWA models can also be used as
approximations of more general state space models of
the form

x(k) = f(x(k−1),u(k))

y(k) = g(x(k),u(k)) ,

with f and g continuous functions.

1 The symbol | stands for “or”.

2.3 Equivalence of PWA and MMPS systems

Theorem 1. If f is a continuous PWA function of
the form (4), then there exist index sets I1, . . . , I` ⊆
{1, . . . ,N} such that

f = max
j=1,...,`

min
i∈I j

(αααT
(i)x+β(i)) .

PROOF. See (Gorokhovik and Zorko, 1994; Ovchin-
nikov, 2001). 2

From the definition of MMPS functions it follows that
(see also (Gorokhovik and Zorko, 1994; Ovchinnikov,
2001)):

Lemma 2. Any MMPS function is also a continuous
PWA function.

From Theorem 1 and Lemma 2 it follows that continu-
ous PWA systems and MMPS systems are equivalent,
i.e., for a given continuous PWA model there exists
an MMPS model (and vice versa) such that the input-
output behavior of both models coincide.

Corollary 3. Continuous PWA models and MMPS
models are equivalent.

Note that this is an extension of the results of
(Heemels et al., 2001a; Heemels et al., 2001b), which
already prove an equivalence between (not necessar-
ily continuous) PWA models and MMPS models, but
there some extra auxiliary variables and some addi-
tional algebraic MMPS constraints between the states,
the inputs and the auxiliary variables were required to
transform the PWA model into an MMPS model.

3. CANONICAL FORMS OF MMPS FUNCTIONS

Let α ,β ,γ ,δ ∈ R. Now we consider some easily
verifiable properties of the max and min operators that
will be used in the proof of the main theorem of this
section.

• Minimization is distributive 2 w.r.t. maximiza-
tion, i.e., min

(

α,max(β ,γ)
)

= max
(

min(α ,β ),
min(α ,γ)

)

, which results in:

min
(

max(α ,β ),max(γ ,δ )
)

=

max
(

min(α ,γ),min(α,δ ),

min(β ,γ),min(β ,δ )
)

. (7)

• The max operation is distributive w.r.t. min.
Hence,

2 If we use the operator symbols ∨ and ∧ to denote max and min
respectively, this distributivity property can be written as α ∧ (β ∨

γ) = (α ∧β )∨ (α ∧ γ).



max
(

min(α ,β ),min(γ,δ )
)

=

min
(

max(α ,γ),max(α ,δ ),

max(β ,γ),max(β ,δ )
)

. (8)

• We have

min(α ,β )+min(γ,δ ) =

min(α + γ,α +δ ,β + γ ,β +δ ) (9)

and

max(α ,β )+max(γ ,δ ) =

max(α + γ,α +δ ,β + γ,β +δ ) . (10)

• The min and max operators are related as fol-
lows:

max(α ,β ) = −min(−α,−β ) . (11)

• If ρ ∈ R is positive, then

ρ max(α,β ) = max(ρα ,ρβ ) (12)

ρ min(α,β ) = min(ρα ,ρβ ) . (13)

Theorem 4. Any MMPS function f : R
n → R can be

rewritten in the min-max canonical form

f = min
i=1,...,K

max
j=1,...,ni

(αααT
(i, j)x+β(i, j)) (14)

or in the max-min canonical form

f = max
i=1,...,L

min
j=1,...,mi

(γγγT
(i, j)x+δ(i, j)) (15)

for some integers K, L, n1, . . . ,nK , m1, . . . ,mL, vectors
ααα(i, j),γγγ(i, j), and real numbers β(i, j),δ(i, j).

PROOF. We will only prove the theorem for the min-
max canonical form since the proof for the max-min
canonical form is similar.
It is easy to verify that if fk and fl are affine functions,
then the functions that results from applying the basic
constructors of an MMPS function (max, min, +, and
scaling — cf. (1)) are in min-max canonical form 3 .
Now we use a recursive argument that consists in
showing that if we apply the basic constructors of an
MMPS function to two (or more) MMPS functions in
min-max canonical form, then the result can again be
transformed into min-max canonical form. Consider
two MMPS functions f and g in min-max canonical
form 4 : f = min(max( f1, f2),max( f3, f4)) and g =
min(max(g1,g2),max(g3,g4)). In Table 1 it is shown
that max( f ,g), min( f ,g), f + g and β f can again be
written in min-max canonical form. 2

Remark 5. The min-max canonical form (14) is some-
times also called conjunctive normal form, and the
max-min canonical form (15) is also called disjunctive
normal form.

3 We allow “void” min or max statements of the form min(s) or
max(s), which by definition are equal to s for any expression s.
Alternatively, we can write min(s,s) or max(s,s).
4 For the sake of simplicity we only consider two min-terms in f
and g, each of which consists of the maximum of two affine func-
tions. However, the proof also holds if more terms are considered.

4. MPC FOR MMPS SYSTEMS

In this section we give a short overview of the main
results of (De Schutter and van den Boom, 2001b)
in which we have extended the MPC framework
to MMPS systems. Related results can be found in
(Bemporad and Morari, 1999). More extensive infor-
mation on conventional MPC for (linear and nonlin-
ear) discrete-time systems can be found in (Camacho
and Bordons, 1995; García and Lee, 2000; Ma-
ciejowski, 2002) and the references therein.

We can use the deterministic model (2)–(3) either as a
model of an MMPS system, as the equivalent model of
a continuous PWA system, or as an approximation of a
general smooth nonlinear system. Note that we do not
include modeling errors or uncertainty in the model.
However, since MPC uses a receding finite horizon
approach, we can regularly update the model and the
state estimate as new information and measurements
become available.

In MPC we compute at each sample step k an optimal
control input that minimizes a cost criterion over the
period [k,k + Np − 1] where Np is the prediction hori-
zon. Assume that at sample step k the current state can
be measured, estimated or predicted using previous
measurements. Then we can make an estimate ŷ(k +
j|k) of the output of the system (2)–(3) at sample step
k + j based on the state x(k−1) and the future inputs
u(k+ i), i = 0, . . . , j. Using successive substitution, we
obtain an expression of the following form:

ŷ(k + j|k) = Fj(x(k−1),u(k), . . . ,u(k + j))

for j = 0, . . . ,Np − 1. Clearly, ŷ(k + j|k) is an MMPS
function of x(k−1),u(k), . . . ,u(k + j).

The cost criterion J used in MPC reflects the reference
tracking error (Jout) and the control effort (Jin):

J(k) = Jout(k)+λJin(k)

where λ is a nonnegative real number. Let r contain
the reference signal and define the vectors

ũ(k) =
[

uT (k) . . . uT (k +Np −1)
]T

ỹ(k) =
[

ŷT (k|k) . . . ŷT (k +Np −1|k)
]T

r̃(k) =
[

rT (k) . . . rT (k +Np −1)
]T

.

In this paper we consider the following output and
input cost functions 5 :

Jout,1(k) = ‖ỹ(k)− r̃(k)‖1 (16)

Jout,∞(k) = ‖ỹ(k)− r̃(k)‖∞ (17)

Jin,1(k) = ‖ũ(k)‖1 (18)

Jin,∞(k) = ‖ũ(k)‖∞ . (19)

5 In conventional MPC usually quadratic cost functions of the form
Jout(k) = ‖ỹ(k)− r̃(k)‖2

2 and Jin(k) = ‖ũ(k)‖2
2 are used. In a discrete

event context, however, other choices are more appropriate (see
(De Schutter and van den Boom, 2001a; De Schutter and van den
Boom, 2001b)).



Table 1. The max, min, + and scaling of two MMPS functions in min-max canonical form
can again be written in min-max canonical form.

• max( f ,g) = max
[

min
(

max( f1, f2),max( f3, f4)
)

, min
(

max(g1,g2),max(g3,g4)
)]

= max
[

max
(

min( f1, f3),min( f1, f4),min( f2, f3),min( f2, f4)
)

,

max
(

min(g1,g3),min(g1,g4),min(g2,g3),min(g2,g4)
)]

(by (7))

= max
(

min( f1, f3),min( f1, f4),min( f2, f3),min( f2, f4),

min(g1,g3),min(g1,g4),min(g2,g3),min(g2,g4)
)

= min
(

max( f1, f1, f2, f2,g1,g1,g2,g2),max( f1, f1, f2, f2,g1,g1,g2,g4), . . .

max( f3, f4, f3, f4,g3,g4,g3,g4)
)

(since max is distributive w.r.t. min)

• min( f ,g) = min
[

min
(

max( f1, f2),max( f3, f4)
)

, min
(

max(g1,g2),max(g3,g4)
)]

= min
(

max( f1, f2),max( f3, f4),max(g1,g2),max(g3,g4)
)

• f +g = min
(

max( f1, f2),max( f3, f4)
)

+ min
(

max(g1,g2),max(g3,g4)
)

= min
(

max( f1, f2)+max(g1,g2),max( f1, f2)+max(g3,g4),

max( f3, f4)+max(g1,g2),max( f3, f4)+max(g3,g4)
)

(by (9))

= min
(

max( f1 +g1, f1 +g2, f2 +g1, f2 +g2),

max( f1 +g3, f1 +g4, f2 +g3, f2 +g4),

max( f3 +g1, f3 +g2, f4 +g1, f4 +g2),

max( f3 +g3, f3 +g4, f4 +g3, f4 +g4)
)

(by (10))

• β f = β min
(

max( f1, f2),max( f3, f4)
)

=



























































min
(

max(β f1,β f2),max(β f3,β f4)
)

(by (12) and (13)) if β > 0

−|β |min
(

max( f1, f2),max( f3, f4)
)

if β < 0

= −min
(

max(|β | f1, |β | f2),max(|β | f3, |β | f4)
)

(by (12) and (13))

= max
(

−max(|β | f1, |β | f2),−max(|β | f3, |β | f4)
)

(by (11))

= max
(

min(−|β | f1,−|β | f2),min(−|β | f3,−|β | f4)
)

(by (11))

= max
(

min(β f1,β f2),min(β f3,β f4)
)

= min
(

max(β f1,β f3),max(β f1,β f4),max(β f2,β f3),max(β f2,β f4)
)

(by (8))

Since we have |x| = max(x,−x) for all x ∈ R, it is
easy to verify that these cost functions are also MMPS
functions.

In practical situations, there will be constraints on the
input and output signals (caused by limited capacity of
buffers, limited transportation rates, saturation, etc.) In
general this is reflected in a nonlinear constraint of the
form

Cc(k,x(k−1), ũ(k), ỹ(k)) > 0 . (20)

The MPC problem at sample step k consists in min-
imizing J(k) over all possible future input sequences
subject to the constraints. To reduce the complexity
of the optimization problem a control horizon Nc is
introduced in MPC, which means that the input is
taken to be constant beyond sample step k +Nc:

u(k + j) = u(k +Nc −1) for j = Nc, . . . ,Np −1.

(21)

Alternatively, we can set the input rate constant as was
done in (De Schutter and van den Boom, 2001b):

∆u(k + j) = ∆u(k +Nc −1) for j = Nc, . . . ,Np −1 ,

(22)

where ∆u(k) = u(k)− u(k − 1). In addition to a de-
crease in the number of optimization parameters and
thus also the computational burden, a smaller control
horizon Nc also gives a smoother control signal, which
is often desired in practical situations.

MPC uses a receding horizon principle. This means
that after computation of the optimal control sequence
u(k),u(k +1), . . . ,u(k +Nc −1), only the first control
sample u(k) will be implemented, subsequently the
horizon is shifted one sample, next the model and
the state are updated using new information from
the measurements, and a new MPC optimization is
performed for sample step k +1.



5. ALGORITHMS FOR THE MMPS-MPC
OPTIMIZATION PROBLEM

5.1 Nonlinear optimization

In general the MMPS-MPC optimization problem is a
nonlinear, non-convex optimization problem. In (De
Schutter and van den Boom, 2001b) we have dis-
cussed some algorithms to solve the MMPS-MPC
optimization problem: we can use multi-start nonlin-
ear optimization based on sequential quadratic pro-
gramming (SQP), or we can use a method based on
the extended linear complementarity problem (ELCP).
However, both methods have their disadvantages. If
we use the SQP approach, then we usually have to
consider a large number of initial starting points and
perform several optimization runs to obtain (a good
approximation of) the global minimum. In addition,
the objective functions that appear in the MMPS-MPC
optimization problem are non-differentiable and PWA
(if we use the cost criteria given in (16)–(19) or in (De
Schutter and van den Boom, 2001a)), which makes the
SQP algorithm less suitable for them. The main disad-
vantage of the ELCP approach is that the execution
time of this algorithm increases exponentially as the
size of the problem increases. This implies that this
approach is not feasible if Nc or the number of inputs
and outputs of the system are large.

An alternative option consists in transforming the
MMPS system into a mixed-logic (MLD) system
(Bemporad and Morari, 1999) since MMPS systems
are equivalent to MLD systems (Heemels et al.,
2001a). The main difference between MLD-MPC and
MMPS-MPC is that MLD-MPC requires the solution
of mixed integer-real optimization problems. In gen-
eral, these are also computationally hard optimization
problems.

In the next section we will present another method
to solve the MMPS-MPC optimization problem that
is similar to the cutting-plane method used in convex
optimization.

5.2 A new algorithm

We assume that the cost criteria given in (16)–(19) are
used 6 . Recall that these objective functions (and any
linear combination of them) are MMPS functions. The
same holds for the estimate of future output ỹ(k). So
if we substitute ỹ(k) in the expression for J(k), we
finally obtain an MMPS function of ũ(k) as objective
function. From Theorem 4 it follows that this objective
function can be written in min-max canonical form
as follows (where — for the sake of simplicity of
notation — we drop the index k):

6 The result below also holds for any other cost criterion that is an
MMPS function of ỹ(k) and ũ(k). So it follows from Theorem 1 that
any continuous PWA norm function can also be used.

J = min
i=1,...,`

max
j=1,...,ni

(αααT
(i, j)ũ+β(i, j))

for appropriately defined integers `, n1, . . . ,n`, vectors
ααα(i, j) and integers β(i). Note that in general the ex-
pression obtained by straightforwardly applying the
manipulations of the proof of Theorem 4 will contain
a large number of affine arguments αααT

(i, j)ũ + β(i, j).

However, many of these terms are redundant 7 and
can thus be removed. This reduces the number of
affine arguments. Also note that the transformation
into canonical form only has to be performed once —
provided that we explicitly consider all arguments that
depend on k as additional variables when performing
the transformation, — and that it can be done off-line.

The derivation below is similar to the cutting-plane al-
gorithm for convex optimization (see, e.g., (Boyd and
Barratt, 1991)). Hence, it requires constraints that are
linear (or convex) in ũ. Note that the control horizon
constraints (21) and (22) satisfy this condition. How-
ever, even if the original MPC constraint (20) is linear
in ũ(k) and ỹ(k), then in general this constraint is not
linear any more after substitution of ỹ(k). Therefore,
from now on we assume that (after substitution of
ỹ(k)) there are only linear 8 constraints on the input
ũ(k):

Pũ+q > 0 . (23)

Note that in general P and q may depend on x(k− 1)
and k, but for the sake of simplicity of notation we
do not explicitly indicate this dependence. In practice
constraints of the form (23) occur if we have to guar-
antee that the control signal ũ(k) or the control signal
rate ∆ũ(k) stay within certain bounds.

To obtain the optimal MPC input signal at sample step
k, we have to solve an optimization problem of the
following form:

min
ũ

min
i=1,...,`

max
j=1,...,ni

(αααT
(i, j)ũ+β(i, j))

subject to Pũ+q > 0 .

or equivalently

min
i=1,...,`

min
ũ

max
j=1,...,ni

(αααT
(i, j)ũ+β(i, j))

subject to Pũ+q > 0 . (24)

Now let i ∈ {1, . . . , `} and consider

min
ũ

max
j=1,...,ni

(αααT
(i, j)ũ+β(i, j))

subject to Pũ+q > 0 .

It is easy to verify that this problem is equivalent to
the following linear programming (LP) problem:

7 E.g., since they appear twice, or since there are other arguments
in the max (min) expression that are always larger (smaller) than the
given argument.
8 The optimization algorithm used below, which is based on the
cutting plane algorithm for convex optimization, can also deal with
convex constraints. So we can also allow convex constraints instead
of (23).



min t

subject to t > αααT
(i, j)ũ+β(i) for j = 1, . . . ,ni

Pũ+q > 0 . (25)

This LP problem can be solved efficiently using (vari-
ants of) the simplex method or an interior-point al-
gorithm (see, e.g., (Nesterov and Nemirovskii, 1994;
Wright, 1997)).
To obtain the solution of (24), we solve (25) for i =
1, . . . , ` and afterward we select the solution ũopt

(i)
for

which max
j=1,...,ni

(αααT
(i, j)ũ

opt
(i)

+β(i, j)) is the smallest 9 . This

results in an algorithm to solve the MMPS-MPC prob-
lem that is more efficient than the SQP or the ELCP
approach.

6. CONCLUSIONS

We have shown that continuous piecewise-affine
(PWA) systems are equivalent to max-min-plus-scal-
ing (MMPS) systems. This result is a refinement of
previous results since it does not require the intro-
duction of auxiliary variables or additional MMPS
constraints. Next, we have considered model predic-
tive control for PWA and MMPS systems. In general,
this leads to nonlinear non-convex optimization prob-
lems. We have presented a method based on canon-
ical forms for MMPS functions and similar to the
cutting-plane convex optimization algorithm to solve
these optimization problems. More specifically, the
approach consists in solving several linear program-
ming problems and afterward selecting the solution
that yields the smallest objective function. This results
in a method that is more efficient than just applying
nonlinear optimization as was done in previous re-
search.

Topics for future research include: a thorough inves-
tigation and comparison of the performance and the
efficiency of the different optimization algorithms that
have been considered above, investigation and char-
acterization of the computational complexity of the
transformation into the canonical form, investigation
and characterization of the (average) number of linear
programming problems and the number of inequalities
they contain, and extension of our results to include
modeling errors and noise in a stochastic or an `∞
framework.
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9 If we use a primal-dual simplex method or an interior-point
method to solve the LP problems, we can improve the efficiency of
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