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Abstract: In this paper the problem of H∞-control design is presented for a class of
discrete-time single-input multi-output bilinear systems with undampered natural
response. The sufficient conditions for the existence of the global H∞-controllers
are obtained via homogeneous-like state feedback and dynamic output feedback,
respectively. The technique used in this paper is based on the concepts of dissipation
inequality, LaSalle invariant principle and linear matrix inequality in discrete time.
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1. INTRODUCTION

Linear systems and bilinear systems can be con-
sidered as the first order and the second order ap-
proximation to nonlinear systems, respectively. In
this sense, bilinear systems are better mathemat-
ical estimators for nonlinear systems than those
for linear systems. Bilinear systems can be re-
garded as a special set of nonlinear systems in con-
trol theory, and also as adequate approximation
for some real-world systems including engineer-
ing applications in nuclear, thermal, and chem-
ical processes, and non-engineering applications
in biology, socio-economics, immunology. Detailed
reviews of bilinear systems for both theory and
applications can be found in (Chabour and J. C.
Vivala, 2000; Chen and Tsao, 2000; Chen, 1998;
Hanba and Miyasato, 2001; Jerbi, 2001; Khapalov
and Mohler, 1998; Lu et al, 1998; Mohler, 1991;
Rahn, 1996; Stepanenko and Yang, 1996; Tuan
and Hosoe, 1997).

1 Work is partial supported by a RGC grant (CityU
1138/01P) and a grant from City University (7001043).

It is known that sufficient conditions for the
stabilization of bilinear systems can be found
in (Jerbi, 2001; Lin and Byrnes, 1994; Lu et
al, 1998; Stepanenko and Yang, 1996); Also, ro-
bust H∞ control problem for continuous bilinear
systems is discussed in (Tuan and Hosoe, 1997), in
which the authors assume that unforced systems
are robust globally asymptotically stable and a
state feedback H∞ controller is obtained. How-
everH∞ control problem for discrete-time bilinear
systems has not been discussed in the literature
so far. Although H∞ control problems for nonlin-
ear discrete-time systems have been extensively
discussed in (Lin and Byrnes, 1996), only local
H∞ performance can be guaranteed by means of
local controller in the neighborhood of the origin,
and no information is obtained outside this neigh-
borhood.There are certainly some limitations on
using the local H∞ controller design in the appli-
cations.

The objective of this paper is to discuss global
H∞ control problem for a class of discrete-time
single-input multi-output bilinear systems, where
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the linear state matrix is assumed to be of Lya-
punov stability or undampered natural response.
Both global state feedback H∞ controller and
global dynamic output feedbackH∞ controller are
directly obtained by means of homogeneous-like
feedback, which can be easily constructed via opti-
mization method and linear matrix inequalities. In
this paper, the dissipative inequality for discrete-
time systems is non-affine on control input, and a
homogeneous-like bounded feedback controller is
designed. In addition, LaSalle invariant principle
and linear matrix inequality (LMI) in discrete
time are employed, and the approach used in this
work is quite different from that in (Tuan and
Hosoe, 1997), where Lyapunov stability approach
and algebraic Riccati equation are applied for a
special class of the continuous-time bilinear sys-
tems.

Notation: The notation in this paper is quite
standard. Rn and Rn×m denote respectively the
n-dimensional Euclidean space and the set of all
n × m real matrices. A′ denotes the transpose
of matrix A. X ≥ Y (or X > Y respectively)
where X and Y are symmetric matrices, means
that X − Y is positive semi-definite (or positive
definite respectively). I is the identity matrix with
compactible dimension. l2[0,+∞] is the space of
square summable vector sequence over [0,+∞]. ‖·
‖ will refer to the Euclidean vector norm whereas
‖·‖[0,+∞] denotes the l2[0,+∞] norm over [0,+∞]
defined as ‖f‖2

[0,+∞] =
∑+∞

0 ‖fk‖2.

2. PROBLEM FORMULATION

Consider the following discrete-time bilinear sys-
tems:

xk+1 = Axk + ukBxk +Dwk,
zk = Exk + ukFxk,
yk = Cxk,

(1)

where xk ∈ Rn, wk ∈ Rq, zk ∈ Rm, yk ∈ Rp and
uk ∈ R are the system state, disturbance input,
controlled output, measured output and control
input, respectively. A,B ∈ Rn×n, E,F ∈ Rm×n,
D ∈ Rn×q and C ∈ Rp×n are constant matrices
with rank C = p.

The purpose of this paper is to construct a
global state feedback H∞ controller and a global
dynamic output feedback H∞ controller respec-
tively, such that the resulting closed-loop sys-
tems have global H∞ performance. The resulting
closed-loop systems satisfy the following two re-
quirements:

(i) when disturbance input wk = 0 (∀k), the
closed-loop systems are globally asymptotically
stable;

(ii) for a given scalar γ > 0, when the initial
condition x0 = 0, then for all wk ∈ l2[0,+∞]
satisfying

‖z‖[0,+∞] ≤ γ‖w‖[0,+∞]. (2)

Before presenting the main results, we make some
basic assumptions and useful preliminary results.
The following assumption is similar to those in
(Lu et al, 1998; Rahn, 1996).

Assumption 2.1. Suppose that the free dynamic
system of (1) is Lyapunov stable, i.e., there exists
a positive definite constant matrix P ∈ Rn×n such
that A′PA− P ≤ 0.

The following two lemmas are useful in the sequel,
their proofs are trivial and therefore omitted.

Lemma 2.1. Let T, T0 ∈ Rn×n be symmetric ma-
trices and c be positive constant, then the follow-
ing two conditions are equivalent:

(i) T0 + cT < 0, T0 − cT < 0;

(ii) for any scalar ρ ∈ [−c, c], T0 + ρT < 0.

Lemma 2.2. Let P, S ∈ Rn×n be symmetric ma-
trices, P ≥ 0 and rank(P ) = r ≥ 1. If
{x : x′Px = 0, x ∈ Rn} ⊂ {x : x′Sx = 0, x ∈ Rn},
then supx∈Rn,x′Px �=0

∣∣∣ x′Sx
x′Px

∣∣∣ < +∞.

3. STATIC STATE FEEDBACK
CONTROLLER

The following theorem is the main result of this
section, which presents a design for global H∞
controller by using homogeneous-like state feed-
back.

Theorem 3.1. Suppose that P satisfies Assump-
tion 2.1 and γ2I − D′PD > 0, then there exists
a bounded static state feedback controller uk =
u(xk) which stabilizes systems (1) with an H∞-
norm γ if there exist ε > 0 and 0 < δ ≤ 1 such
that

inf
‖x‖=1, x∈Rn

∆(ε, δ, x) ≥ 0, (3)

sup
‖x‖=1, x∈KerB∩KerF

x′∆δx ≤ 0, (4)

Ω :=∩n−1
j=0 [Ker[(A

′PA− P )Aj ] ∩Ker(EAj)]

= {0}, (5)

where

∆(ε, δ, x) := (x′∆1x)2 − (1 + ε)(x′∆δx)(x′∆2x),



∆δ :=E′E +A′∆PA+ (1− δ)(A′PA− P ),

∆1 :=A′PB + E′F +A′∆PB,

∆2 :=B′PB + F ′F +B′∆PB,

∆P := PD(γ2I −D′PD)−1D′P.

Remark 3.1. Condition (4) implies that systems
(1) have H∞ performance in “uncontrollable
mode” or in “input-nulling subset”, i.e., KerB ∩
KerF . Similar assumption is made in (Gutman,
1981; Hanba and Miyasato, 2001) that the “un-
stable mode” of the plant is isolated from the
region where control does not affect the plant.
That is, for stabilization of continuous-time sys-
tems: ẋ = Ax+ uBx, (Gutman, 1981; Hanba and
Miyasato, 2001) assume that there is a symmetric
positive definite matrix P such that for any x �= 0,
x′(PA+A′P )x < 0, if x′(PB +B′P )x = 0.

Proof of Theorem 3.1: Define a Lyapunov function
Vk as follows:

Vk := x′kPxk, (6)

and denote ηk := D′P (A + ukB)xk − (γ2I −
D′PD)wk, after some algebraic manipulations,
then

Vk+1 − Vk + z′kzk − γ2w′
kwk

= x′k(A
′PA− P )xk + u2

kx
′
k(B

′PB + F ′F )xk

+2ukx
′
k(A

′PB + E′F )xk

+x′kE
′Exk + x′k(A+ ukB)′∆δ(A+ ukB)xk

−η′k(γ2I −D′PD)−1ηk

≤ δx′k(A
′PA− P )xk + u2

kx
′
k∆2xk

+2ukx
′
k∆1xk + x′k∆δxk.

Choose the following homogeneous-like state feed-
back controller

uk =




− x′k∆1xk

(1 + ε)x′k∆2xk
, xk /∈ KerB ∩KerF

0, xk ∈ KerB ∩KerF.
(7)

Note that ∆2 is semi-positive definite and {x :
x′∆2x = 0, x ∈ Rn} = KerB ∩ KerF ⊂
{x : x′∆1x = 0, x ∈ Rn}, when xk /∈
KerB ∩ KerF , then from Lemma 2.2 we have
|uk| ≤ max |λ(∆1+∆′

1)|
2(1+ε)λmax(∆2)

< +∞, which implies that
control input uk is bounded. Considering that
∆(ε, δ, x) is homogeneous on x, then it follows
from (3) that ∆(ε, δ, xk) = (x′k∆1xk)2 − (1 +
ε)(x′k∆δxk)(x′k∆2xk) ≥ 0, ∀xk ∈ Rn. Now we
have two different cases as follows: a) When xk /∈
KerB ∩KerF ,

Vk+1 − Vk + z′kzk − γ2w′
kwk

≤ δx′k(A
′PA− P )xk − εu2

kx
′
k∆2xk ≤ 0.

(8)

b) When xk ∈ KerB ∩KerF ,

Vk+1 − Vk + z′kzk − γ2w′
kwk

≤ δx′k(A
′PA− P )xk + x′k∆δxk ≤ 0. (9)

If the initial condition x0 = 0, then it is obvious
that, for both cases above, we have

N∑
k=0

z′kzk − γ2
N∑

k=0

w′
kwk ≤ VN ≤ 0, ∀N > 0.(10)

This implies that the H∞-norm of the closed-loop
systems (1) and (7) is less than or equal to γ.

Next, we show the internal stability of the closed-
loop systems (1) and (7). Let wk = 0, ∀k. If
xk /∈ KerB ∩ KerF , then it follows from (8) that
Vk+1 − Vk ≤ δx′k(A

′PA − P )xk − εu2
kx

′
k∆2xk −

z′kzk ≤ 0. If xk ∈ KerB ∩ KerF , then uk =
0 and from (9), we have that Vk+1 − Vk ≤
δx′k(A

′PA−P )xk−x′kE′Exk+x′k∆δxk ≤ 0. Then
the resulting closed-loop systems are Lyapunov
stable. Furthermore, Vk+1 − Vk = 0 implies that
x′k(A

′PA − P )xk = 0, uk = 0 and zk = 0. Then
(A′PA−P )xk = 0, Exk = 0 and xk = Akx0, k =
0, 1, 2, · · ·, which implies x0 ∈ Ω = {0}. It follows
from LaSalle invariant principle that the resulting
closed-loop systems are globally asymptotically
stable when wk = 0, ∀k.

Remark 3.2. From the above proof, we can see
that Ω contains the maximal invariant subset of
Vk+1 − Vk = 0 (k = 1, 2, · · ·), we introduce
condition (5) to guarantee the global asymptotic
stability of the resulting closed-loop systems by
means of LaSalle invariant principle.

Remark 3.3. It is easy to see that, for any ε > 0
and 0 < δ ≤ 1, we have inf‖x‖=1, x∈Rn ∆(ε, 0, x) ≥
inf‖x‖=1, x∈Rn ∆(ε, δ, x) and sup‖x‖=1,x∈KerB∩KerF

x′∆0(0)x ≤ sup‖x‖=1, x∈KerB∩KerF x′∆δx, which
means that the following condition (11) is less
conservative than (3) and (4).

inf
‖x‖=1, x∈Rn

∆(ε, 0, x) ≥ 0,

sup
‖x‖=1, x∈KerB∩KerF

x′∆0(0)x ≤ 0. (11)

If (3) and (4) are replaced by (11), from the
proof of Theorem 3.1, we can obtain the global
asymptotic stability of the resulting closed-loop
systems by LaSalle invariant principle if

Ω0 := ∩n−1
j=0Ker(EA

j) = {0}. (12)

However, (5) is less conservative than (12). It can
be seen from the numerical example (26) in this
paper that condition (12) is not satisfied, while
condition (5) is satisfied (see also Remark 5.1).
In addition, if δ > 0, the invariant subset of
Vk+1−Vk = 0 is smaller than that in the case when



δ = 0, which can also be seen from (5) and (12).
Usually, both δ > 0 and ε > 0 are chosen to be
as small as possible to make that (3) and (4) easy
to satisfy. Therefore the purpose of introducing ε
and δ in Theorem 3.1 is to guarantee the maximal
invariant subset as small as possible.

For the case when ε = δ = 0, the following
theorem presents different sufficient conditions to
guarantee the existence of H∞ controller, the
proof is similar to Theorem 3.1, where Lyapunov
stability theorem is used instead of LaSalle invari-
ant principle.

Theorem 3.2. Suppose that P satisfies Assump-
tion 2.1 and γ2I − D′PD > 0, then there exists
a bounded static state feedback controller uk =
u(xk) which stabilizes systems (1) with an H∞-
norm γ if the following conditions are satisfied.

inf
‖x‖=1, x∈Rn

∆(0, 0, x) > 0, (13)

sup
‖x‖=1, x∈KerB∩KerF

x′∆0(0)x < 0. (14)

Remark 3.4. Compared with inequalities (3) and
(4) in Theorem 3.1, (13) and (14) in Theorem 3.2
are strict inequalities, while an additional suffi-
cient condition (5) is needed in Theorem 3.1.

4. DYNAMIC OUTPUT FEEDBACK
CONTROLLER

Before presenting the main result, we give some
assumptions and preliminary results.

Assumption 4.1. There exist 0 < µ1 ≤ 1 and
µ2 > 0 such that

inf
‖x‖=1, x∈Rn

Γ(µ1, µ2, x) ≥ 0, (15)

sup
‖x‖=1,x∈KerB∩KerF

x′Γ0x ≤ 0, (16)

where

Γ(µ1, µ2, x) := (x′Γ1x)2 − (x′Γ0x)(x′Γ2x),

Γ0 := 2E′E +A′PA+ (1− µ1)(A′PA− P ),

Γ1 := 2A′PB + 2E′F,

Γ2 := 2(µ2 + 1)(B′PB + F ′F ).

Noticing that {x : x′Γ2x = 0, x ∈ Rn} = KerB ∩
KerF ⊂ {x : x′Γ1x = 0, x ∈ Rn}, then from
Assumption 4.1 and Lemma 2.2, we have

Lemma 4.1. Under Assumption 4.1, then there
exist 0 < µ1 ≤ 1 and µ2 > 0 such that

sup
x/∈KerB∩KerF

∣∣∣∣x
′Γ1x

x′Γ2x

∣∣∣∣ := c < +∞. (17)

The following theorem is the main result of this
section, which presents a design for global H∞
controller by using homogeneous-like dynamic
output feedback.

Theorem 4.1. Under Assumptions 2.1, 4.1, then
there exists a bounded dynamic output feedback
controller which stabilizes systems (1) with an
H∞-norm γ if the following conditions are sat-
isfied:

(i) Ω = {0};
(ii) the following LMIs on X ∈ Rn×n, Y ∈ Rn×p

and M ∈ Rp×p are solvable:

Φ(−c,X, Y ) < 0, Φ(c,X, Y ) < 0,

CX −MC = 0,
(18)

where Ψ1 = (A+ ρB)X −Y C, Ψ2 := (E+ ρF )X ,
Ψ3 := −X + γ−2DD′ and

Φ(ρ,X, Y ) :=




−X Ψ′
1 Ψ′

2 C′Y ′

Ψ1 Ψ3 0 0
Ψ2 0 − 1

2I 0
Y C 0 0 − 1

2P
−1


 .

Proof: It follows from (18) that X is nonsingular,
thus the fact that C is full rank and CX−MC = 0
in (18) implies thatM is nonsingular, see (Crusius
and Trofino, 1999). Let L = YM−1. Consider the
full-order dynamic output feedback controller of
the form

ξk+1 = Aξk + ukBξk + L(yk − Cξk), (19)

uk =




−ξ′kΓ1ξk
ξ′kΓ2ξk

, for ξk /∈ KerB ∩KerF

0, for ξk ∈ KerB ∩KerF.

It follows from Lemma 4.1 that we have |uk| ≤ c,
that is, the control input uk in (19) is bounded.
Denote the error state ek = xk−ξk, then it follows
from (1) and (19) that

ek+1 = (A− LC + ukB)ek +Dwk. (20)

LetQ = X−1, then choose the following Lyapunov
function Vk = ξ′kPξk + e′kQek. Then

Π := Vk+1 − Vk + z′kzk − γ2w′
kwk

= [(A+ ukB)ξk + LCek]′P [(A+ ukB)ξk
+LCek]− ξ′kPξk + [(A− LC + ukB)ek

+Dwk]′Q[(A− LC + ukB)ek +Dwk]

−e′kQek + [Eek + Eξk + uk(Fek + Fξk)]′

·[Eek + Eξk + uk(Fek + Fξk)]− γ2I

Noticing that

2e′k(A− LC + ukB)′QDwk



≤ e′k(A− LC + ukB)QD(γ2I −D′QD)−1D′Q

·(A− LC + ukB)ek + w′
k(γ

2I −D′QD)wk,

2ξ′k(A+ ukB)′PLCek

≤ ξ′k(A+ ukB)′P (A+ ukB)ξk + e′kC
′L′PLCek,

2ξ′k(E + ukF )′(E + ukF )ek

≤ ξ′k(E + ukF )′(E + ukF )ξk
+e′k(E + ukF )′(E + ukF )ek.

Then

Π ≤ ξ′kΦ1ξk + e′kΦ2ek, (21)

where Φ1(uk) := µ1(A′PA−P )− 2µ2u
2
k(B

′PB+
F ′F )+u2

kΓ2+2ukΓ1+Γ0, Φ2(uk) := 2C′L′PLC+
2(E + ukF )′(E + ukF ) − Q + (A − LC + ukB)′

[Q+QD(γ2I −D′QD)−1D′Q](A− LC + ukB).

Similar to the proof of Theorem 3.1, Assump-
tion 4.1 also implies that Γ(µ1, µ2, ξk) = (ξ′kΓ1ξk)2−
(ξ′kΓ0ξk)(ξ′kΓ2ξk) ≥ 0, ∀ξk ∈ Rn. In addition,
when ξk /∈ KerB ∩KerF , ξ′kΦ1ξk = µ1ξ

′
k(A

′PA−
P )ξk − 2µ2u

2
kξ

′
k(B

′PB + F ′F )ξk ≤ 0; when ξk ∈
KerB ∩ KerF , ξ′kΦ1ξk = µ1ξ

′
k(A

′PA − P )ξk +
ξ′kΓ0ξk ≤ 0, which implies that for all ξk ∈ Rn,
ξ′kΦ1ξk ≤ 0.

Next, we show that Φ2 < 0. It follows from
Lemma 2.1 that Φ(uk, X, Y ) < 0. Noticing that
X = Q−1 and the following matrix equal-
ity: (Q−1 − γ−2DD′)−1 = Q + QD(γ2I −
D′QD)−1D′Q, then it follows from the Schur
complement and some algebraic manipulations
that that Φ2 < 0. Therefore

Π ≤ ξ′kΦ1ξk + e′kΦ2ek ≤ 0. (22)

Following the same proof for Theorem 3.1, we can
obtain the results, therefore it is omitted here.

Similar to Theorem 3.2 and the proof of Theo-
rem 4.1, we have the following result.

Theorem 4.2. Under Assumptions 2.1, then there
exists a bounded dynamic output feedback con-
troller which stabilizes systems (1) with an H∞-
norm γ if LMIs (18) are solvable and

inf
‖x‖=1, x∈Rn

Γ(0, 0, x) > 0, (23)

sup
‖x‖=1,x∈KerB∩KerF

x′Γ0x |µ1=0 < 0, (24)

where

c = sup
x/∈KerB∩KerF

∣∣∣∣x
′Γ1x

x′Γ2x

∣∣∣∣
µ1=µ2=0

. (25)

Remark 4.1. Compared with inequalities (15) and
(16) in Theorem 4.1, (23) and (24) are strict in-
equalities, while an additional sufficient condition
Ω = {0} is needed in Theorem 4.1.

Remark 4.2. The objective of introducing two pa-
rameters µ1 and µ2 in Theorem 4.1 is similar to
that in Remark 3.3. In the proof of Theorem 4.1,
the separation principle is used to design control
input gain and observer respectively. The LMI
sufficient conditions for output feedback design
in the Theorem 4.1 is motivated by (Crusius and
Trofino, 1999).

5. NUMERICAL EXAMPLE

Consider the following example:

x1k+1 = x1k + x1kuk + 0.1wk,

x2k+1 = 0.1x2k + x2kuk + 0.2wk,

zk = 0.1x1k + 0.1x2k + x1kuk,

yk = x1k.

(26)

That is,

A =
(
1 0
0 0.1

)
, B =

(
1 0
0 1

)
, C = ( 1 0 ) ,

D =
(
0.1
0.1

)
, E = ( 0.1 0.1 ) , F = ( 1 0 ) .

Let the H∞ norm constraint γ = 1. At first,
we consider state feedback H∞ controller design.

Choose P =
(
1 0
0 1

)
, then it is easy to have

that Ω ⊂ Ker(A′PA − P ) ∩ KerE = {0}, which
implies that (5) holds. Choose small parameters
ε and δ as ε = 0.1 and δ = 0.01, it is easy
to check that condition (3) holds by means of
Optimization toolbox in Matlab. Then the state
feedback controller (7) can be given as follows:

uk =
{
αk, for x2

1k + x2
2k �= 0,

0, for x2
1k + x2

2k = 0,
(27)

where

αk := −1.1105x2
1k + 0.1232x1kx2k + 0.1042x2

2k

2.116x2
1k + 0.0464x1kx2k + 1.1463x2

2k

.

In this case, we have |u| ≤ 0.5045. Let wk = 1
k+1 ,

(k = 0, 1, 2 · · ·), x10 = x20 = 0, then ‖z‖[0,+∞]

‖w‖[0,+∞]
=

0.0209 ≤ γ = 1.

Remark 5.1. As a contrast, choose δ = 0 we have
that

Ω0 := ∩n−1
j=0 Ker(EA

j) = span
{(

0
1

)}
�= {0},

which implies that we cannot apply the sufficient
conditions (11) and (12) in Remark 3.3 to obtain
the global asymptotic stability of the resulting
closed-loop systems.



Next we consider the dynamic output feedback

H∞ controller design. Choose P =
(
1 0
0 1

)
and

small parameters as µ1 = 0.01 and µ2 = 0.1,
similarly we can check that (15) and (16) hold. In
this case, we have c = 0.5025. A triple of solutions
for LMIs (18) can be given as follows:

X =
(
0.2077 0

0 0.3154

)
, Y =

(
0.1879
0.0394

)
,

M = 0.2077.

Then L = ( 0.9048 0.1896 )′, and dynamic out-
put feedback controller can be given as follows:

ξ1k+1 = ξ1k + ξ1kuk + 0.9048(yk − ξ1k),

ξ2k+1 = 0.1x2k + x2kuk + 0.1896(yk − ξ1k),

uk =
{
βk, for ξ21k + ξ22k �= 0,
0, for ξ21k + ξ22k = 0,

where

βk := −2.2ξ21k + 0.2ξ1kξ2k + 0.2ξ22k

4.4ξ21k + 2.2ξ22k

.

Let wk = 1
k+1 , (k = 0, 1, 2 · · ·), x10 = x20 = 0,

then ‖z‖[0,+∞]

‖w‖[0,+∞]
= 0.0204 ≤ γ = 1.

6. CONCLUSIONS

Global H∞-control problem for discrete-time bi-
linear systems is first discussed in this paper.
Bounded state feedback controller and bounded
dynamic output feedback controller are designed
to guarantee the global H∞ performance for the
resulting closed-loop systems, respectively. The
techniques used are dissipation inequality, dif-
ferential games, LaSalle invariant principle and
linear matrix inequality in discrete time. In this
paper, two different types ((i) ε > 0 and δ > 0,
(ii) ε = δ = 0) of sufficient conditions are pre-
sented for discrete-time bilinear systems by state
feedback controllers, similar discussion is also pre-
sented for output feedback case. Extension of the
present results to MIMO discrete-time bilinear
systems is an interesting topic for further study.
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