
HYBRID NEURAL MODELS FOR TIME-SERIES
FORECASTING

Sinha, M., Gupta, M.M. and Nikiforuk, P.N.

Intelligent Systems Research Laboratory
College of Engineering, University of Saskatchewan

57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9, CANADA
Email: guptam@sask.usask.ca

Abstract: Three new hybrid neural models which are based upon the basic neural model put
forth by McCulloch and Pitts (Haykin, 1999) and the compensatory neural models by Sinha
et al. (2000), (2001) are proposed in this paper. The basic neural and the compensatory neural
models are modified to take into account any linear dependence of the outputs on the inputs.
This makes the hybrid models suitable for the solution of some complex problems such as
chaotic nonlinear time-series and more simple problems such as linear time-series. These
models are verified using a simulation example. It is shown that the hybrid neural models
are superior to the basic neural model and the compensatory neural models for time-series
forecasting problems. Copyright c2002 IFAC.

Keywords: neural models, neural network, time-series analysis, hybrid.

1. INTRODUCTION

Attempts have been made to solve problems associ-
ated with systems whose dynamics may involve both
linear and nonlinear relations between the inputs and
outputs using basic neuron (BN) based neural net-
works, and often these neural models require large
numbers of connections and neurons. Moreover, the
results of predictions on the validation set may not be
very encouraging if the dynamical problem is chaotic.
Wavelet neural networks have been suggested as be-
ing able to overcome these problems (Yamakawa et
al., 1994). However, wavelet neural networks may not
be very efficient as they lead to significant increases in
the computational burden (Sinha et al., 2001), whereas
their prediction accuracy is only comparable to that
of the basic/compensatory neurons based neural net-
works. To overcome these deficiencies, it is proposed
in this paper to include a linear term in the basic
and the compensatory neural models to accomodate
the possibility of any linear relationships between the
inputs and outputs. These neural networks are named
by prefixing the word “hybrid”.

Three hybrid neural models are presented in this paper
and are tested using a time-series forecasting problem.
These three neural models are called hybrid basic neu-
ron (HBN), hybrid compensatory neuron -1 (HCN-1),
and hybrid compensatory neuron -2 (HCN-2).

2. NEURAL MODELS

A very brief review of the basic and the compensatory
neural models will now be presented followed by the
development of the three new hybrid neural models,
which have been found to be suitable in dealing with
time-series forecasting problems.

The hybrid basic neuron: Since the basic neuron
(BN) described by McCulloch and Pitts is well known,
only its modification to a hybrid basic neuron (HBN)
will now be described. In HBN, the output y is a
function of the weighted sum of the neural inputs and
is described as

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

u =

NX
i=0

wixi (1)

y = � (u) + u (2)

�(u) = tanh(�u) =

�
exp�u� exp��u

�

(exp�u+exp��u)
(3)

where � is a steepness factor, is a gain constant, wi

is the ith neural weight, xi is the ith neural input, x0
is the bias, and N is the number of the neural inputs.
This HBN is depicted in Fig. 1.

neural inputs

x

weights
neuron

u=Σ u +φ(.)

0

wN

w

w

i

1

w0

..

..

x

x
i

1

N

.

.

.

.

x

.

.
y

neural output

Fig. 1. Hybrid basic neuron (HBN)

The compensatory neurons -1 & 2 (CN -1 & 2):
Sinha et al. (2000) have proposed a compensatory
neuron -1 (CN-1) where each neuron incorporates two
nonlinearities as shown in Fig. 2. This neural model

’

Σ

ΣΣ

+

neuron

x

x

+
y

u =

u =

1

2
u=u +u21

φ(.)

w
w

w
w
w

..

..

..
1

N

1

0

1

i

N
x

.

..

.

.

.

.

wi

x0

weights
wN’

..
wi’

ψ(.) 1−w

neural inputs

neural output

Fig. 2. Compensatory neuron -1 (CN-1)

was found to be efficient for solving functional map-
ping and classification problems, as well as time-series
forecasting problems. The compensatory neuron -1 is
defined as

u =

NX
i=0

wixi +

NX
j=1j 6=i

NX
i=1

w
;
iw

;
jxixj (4)

y = w� (u) + (1� w) (u) (5)

 (u) = arctan(�u) (6)

where � (u) is defined in Eqn. (3). � (u) is differ-
ent from (u), and this allows classification into two
classes using only one neuron, e.g., in the four-bit
parity problem.
Later, Sinha et al. (2001) proposed a compensatory
neuron -2 (CN-2) where each neuron incorporates one
nonlinearity. The compensatory neuron -2 is achieved
by setting w = 1 in Eqn. (5), and is depicted in Fig. 3.

’

Σ

ΣΣ
x

x

x
y

u =

u =

1

2

u=u +u 1 2

φ(.)

1

i 1w

w

.

.

.

.

+

N

N

wN’
..

wi’
..

x
0

w0
w1..
wi

.

.
..

weights

neuron

neural inputs

neural output

Fig. 3. Compensatory neuron -2 (CN-2)

The hybrid compensatory neurons -1 & 2 (HCN-
1 & 2): In the hybrid compensatory neural models,
which are modifications of the compensatory neural

models, the weighted sum of the inputs
�PN

i=0 wixi

�

is added to the outputs of the nonlinear functions.

HCN-1 is defined as

y = w� (u) + (1� w) (u) +

NX
i=0

wixi (7)

and is shown in Fig. 4, where u is defined in Eqn. (4),
and � (u) and (u) are given by Eqns. (3) and (6)
respectively.

HCN-2, on the other hand, is defined as

y = w� (u) +

NX
i=0

wixi (8)

where u and � (u) are defined by Eqns. (4) and (3)
respectively. This neuron is depicted in Fig. 5.

’

’

’

Σ

ΣΣ

+

neuron
weights

x

x

+
y

u =

u =

1

2
u=u +u21

φ(.)

w
w
w

w
w
w

..

..

..

..
wN

i

1

N

1

0

1

i

x

.

..

.

.

.

.

i

x0

N

ψ(.)

w

1−w

neural inputs

neural output

Fig. 4. Hybrid compensatory neuron -1 (HCN-1)

Σ

ΣΣ

x

+ +
y

neuron

u=u +u1 2

u =

u =

1

2

v

w

w
w

N

i

1

N

.

.

.

.

x

x

.

φ(.)

weights
w

N’
..

wi’
..

w’1

w
i

1

0

0x

.

..

.

.

neural inputs

neural output

Fig. 5. Hybrid compensatory neuron -2 (HCN-2)

Various architectures: It is the intent of this paper to
compare the performance of the three new hybrid neu-
ral models HBN, HCN-1 and HCN-2 with the perfor-
mance of their respective original models. The neural
network architectures used for this purpose have an

output layer that is composed of only a summation
function and the nomenclatures used for these net-
works are as follows:

� Basic neural network architecture (BNNA) based
on BN;

� Hybrid basic neural network architecture
(HBNNA) based on HBN, Fig. 1;

� Compensatory neural network architecture-1
(CNNA-1) based on CN-1, Fig. 2;

� Compensatory neural network architecture-2
(CNNA-2) based on CN-2, Fig. 3;

� Hybrid compensatory neural network architecture-
1 (HCNNA-1) based on HCN-1, Fig. 4;

� Hybrid compensatory neural network architecture-
2 (HCNNA-2) based on HCN-2, Fig. 5.

3. LEARNING ALGORITHM

If in a neural network model the output layer has
a summation function only, then the output layer
neuron-weights can be updated using either a linear
scheme such as matrix inversion, a singular value
decomposition approach or the usual backpropaga-
tion algorithm. If the weights are updated using the
backpropagation algorithm in conjunction with scaled
conjugate gradient learning (SCG) (Moller, 1993), this
then constitutes self-scaling scaled conjugate gradi-
ent learning (SSCG) (Sinha et al., 2000) (for off-
line learning). It has been shown (Sinha et al., 2000)
that this method gives better accuracy for functional
mapping and classification problems. Here, all the
computations are done in off-line mode and the error
gradients for all the patterns are obtained by summing
and averaging the error gradients for the individual
patterns. The equations for calculating the gradient of
the error function, described in Eqn. (9), for HCNNA-
1 only are given below.

E(~w(n)) =
1

2

KX
k=1

(yd(k)� y(k))
2 (9)

where E(~w(n)) is the error at the nth iteration, yd(k)
is the desired output, y(k) is the actual neural output,
K is the number of neurons in the output layer, ~w

is a vector containing all the weights in the neural
network, and n is the iteration number.

Gradient calculation: The error gradient calculation
for the hybrid compensatory neural network architec-
ture -1 (HCNNA-1) is as follows

Gradient calculation for output layer of HCNNA-1:

@E(n)

@wkj

= �(yd(k)� y(k))yj (10)

yj = wjj�j (uj) + (1:0� wjj) j (uj) +

NX
i=0

wjixi

(11)

uj =

NX
i=0

wjixi +

NX
i=1h6=i

NX
h=1

w
;
jiw

;
jhxixh (12)

where �j(uj) is given by Eqn. (3) and j(uj) is
given by Eqn. (6), the subscript j denotes the neuron
number. wkj is the weight from j

th neuron to the kth

neuron in the output layer, wji; w
;
ji are the weights

from the ith input to the jth neuron,wjj is the weight
used in the j

th compensatory/hybrid compensatory
neuron, and yj is the output of the j th neuron.

Gradient calculation for input layer and neuron blocks
of HCNNA-1:

@E(n)

@wjj

= Æj (�j(uj)� j(uj)) (13)

@E(n)

@wji

= xi

�
Æ
1

yj
wjj + (1� wjj)Æ

2

yj
+ Æj

�
(14)

@E(n)

@w
;
ji

= 2:0xi
�
sj � xiw

;
ji

� �
Æ
1

yj
wjj + Æ

2

yj
(1� wjj)

�

(15)

Æ
1

yj
= Æj

@�j

@uj

(16)

Æ
2

yj
= Æj

@ j

@uj

(17)

Æj =

KX
k=1

�(yd(k)� y(k))wkj (18)

sj =

NX
i=1

xiw
;
ji (19)

4. SIMULATION STUDIES AND DISCUSSION

While the essential components defining a neural net-
work are its topology, size, functionality, learning
algorithms, training/validation, and implementation,
the main factors which will decide the superiority of
neural models, in general, using supervised learning,
are the computational burden for each iteration/epoch,
number of epochs for convergence, NN size and its
generalization. The performance measure involves the
selection of these features and quantifying, in some
form, the success of the selection. The result of the

performance evaluation of a neural network will de-
pend significantly on its applications.

A chaotic nonlinear time-series problem: In this
study the following nonlinear time-series equation
was used to generate the training and the validation
sets to test the efficiency of the proposed neural mod-
els.

xn+1 =
5xn

1 + x2n

�0:5xn�0:5xn�1+0:5xn�2 (20)

The initial values were taken as x0 = 0:2, x1 =

0:3, and x2 = 1:0. The neural network consisted of
three neural inputs and one neural output. The three
neural inputs were comprised of two tapped delays
(xn�1; xn�2) and one present-value (xn). The data
set were constructed by deleting the past-past value
and adding a new predicted value. A time-series of
101 points was used to construct the training data set,
consisting of 99 training patterns.

To compare the performance of the proposed hybrid
neural models, the following simulations results were
recorded and are discussed:

� Mean square error (MS Error)
� Desired and predicted values
� Prediction error on validation set

These results are presented in Figs. 6 to 10. In Fig.
6, the mean square error for the problem defined in
Eqn. (20) during training is presented. All the neural
network models used for training consisted of three
neurons in the input layer and a summation function
only in the output layer.

3
4

5

6

2

1

6. HCNNA−2
5. HCNNA−1
4. CNNA−2
3. CNNA−1
2. HBNNA
1. BNNA

10

10

10

10

10

10

10

10

10

10

ITERATION

M
.S

. E
R

R
O

R

−07

0 200 400 600 800 1000 1200 1400 1600 1800 2000

−08

−06

−05

−04

−03

−02

−01

00

−09

Fig. 6. Mean square error during training for different
neural architectures

It can be observed that the convergence was best for
HCNNA-2 while those for HBNNA and HCNNA-
1 were sluggish as compared to the other models.
The best convergence of HCNNA-2 is due to the fact
that HCN-2 models higher order nonlinearity by us-
ing cross-correlation terms (double summation term
in Eqn. (12)). Moreover, the weighted linear inputs
added to the output of the neuron made it effective in
modeling the linear terms involved in the time-series
forecasting problem. The addition of the linearity to
the output of the neuron may affect the initial con-

vergence due to tradeoff with the nonlinearity. Unlike
HCN-2, HCN-1 used two nonlinearities (usefull for
classification problems) which did not help HCNNA-
1 to converge more quickly. Similarly, in HBNNA the
addition of the linear weighted sum of the inputs to
the output of the neuron reduced the rate of conver-
gence as explained above. It may also be noted that the
amount of computation involved for the compensatory
models was slightly more than that for BNNA and
HBNNA.

All of the predicted outputs on the training set were
observed to coincide very closely with the desired
output for all of the neural models. This implies good
learning on the training set and it is for this reason
that the plots of these responses are not given in this
paper. The prediction results for the validation set
are presented in Fig. 7. It is observed that all the
models predicted accurately up to the 105th time-
instant, however, after the 105th time-instant the non-
hybrid models (BNNA, CNNA-1, CNNA-2) diverged.
This was because the nonhybrid neural models were
not able to model the linear terms involved in Eqn.
(20), therefore, could not produce the desired output
which was very close to zero at the 106th time-instant
thereby leading to divergence.

6. HCNNA−1
5. CNNA−2
4. CNNA−1
3. HBNNA
2. BNNA
1. Desired

7. HCNNA−2

D
E

SI
R

E
D

 &
 P

R
E

D
IC

T
E

D
 O

U
T

PU
T

5
4

1
6

3

2

7

TIME
−0.5

0

0.5

1

1.5

2

2.5

3

100 102 104 106 108 110 112

Fig. 7. Desired and predicted output for different neu-
ral network models on validation set

On the other hand, the hybrid models (HBNNA,
HCNNA-1, HCNNA-2) predicted accurately beyond
the 105th time instant as they were able to model
linear and nonlinear components of the given time-
series equation adequately. This is evident from Fig.
7. It may be noted that HCNNA-2 performed best in
terms of both the convergence and the prediction on
the validation set. In Fig. 8, the difference between the
desired and the predicted values on the validation set
is presented for further clarification to show how the
error has increased after the 105th time-instant.

In the above discussion all of the models were com-
posed of an equal number of neurons (three). The
question which then arose was to what extent the per-
formance of the nonhybrid models would improve if
the number of neurons was increased for these. Based
on the results already obtained it was decided to com-

2. HBNNA

3

4
1

6
5

2

6. HCNNA−2
5. HCNNA−1
4. CNNA−2
3. CNNA−1

TIME

E
R

R
O

R

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

100 102 104 106 108 110 112

1. BNNA

Fig. 8. Prediction error for different neural network
models on validation set

pare the performance of HCNNA-2 with a BNNA now
employing nine neurons in the input layer. As before,
both had only a summation function in the output
layer. A comparison of the mean square error decay
during training is shown in Fig. 9, and the desired and
predicted values in Fig. 10.

HCNNA−2
BNNA

M
.S

. E
R

R
O

R

ITERATION

10

10

10

10

10

10

10

10

10

10 0 200 400 600 800 1000 1200 1400 1600 1800 2000
−09

−08

−07

−06

−05

−04

−03

−02

−01

00

Fig. 9. Mean square error during training for BNNA
and HCNNA2

It is evident from Fig. 9 that the increase in the number
of neurons in BNNA resulted in some improvement
in the convergence, but its convergence was poor
compared to HCNNA-2. Moreover, the increase in the
number of neurons in the case of BNNA made it more
computing intensive than HCNNA-2. In Fig. 10, the
prediction results for the validation set are presented.
Again it is self evident that increasing the number
of neurons in BNNA did not improve the prediction.
A small error in prediction at the 106th time-instant
rapidly increased afterwards. This clearly indicates
that the nonhybrid models were not able to model the
time-series equation adequately.

5. CONCLUSIONS

Three new hybrid neural models were presented in
this paper. It was shown that the hybrid compensatory
neuron -2 which forms the basis of HCNNA-2 per-
formed the best both in terms of convergence and
the accuracy of prediction of the time-series. More-
over, all the hybrid models performed better than the

BNNA
Desired

HCNNA−2

TIME

D
E

SI
R

E
D

 &
 P

R
E

D
IC

T
E

D
 O

U
T

PU
T

0

0.5

1

1.5

2

2.5

3

100 102 104 106 108 110 112

Fig. 10. Desired and predicted output for BNNA and
HCNNA-2

nonhybrid models on the validation set. Another ad-
vantage of using the compensatory/hybrid compen-
satory models was that they required fewer neurons
and, therefore, they could be trained on a smaller data
set properly as compared to the basic neural model
which generally required more neurons and thereby
demanded a large data set. In fact, it was observed that
as the nonlinearity of the system increased the com-
pensatory/hybrid compensatory models became more
effective. It is concluded, therefore, that the hybrid
models are more suitable for the time-series forecast-
ing problems which may involve both linear and the
nonlinear terms.

6. REFERENCES

Haykin, S. (1999). Neural Networks: A Comprehen-
sive Foundation. Prentice Hall Inc.. Upper Saddle
River, New Jersey.

Moller, M. F. (1993). A scaled conjugate gradient
algorithm for fast supervised learning. Neural
Networks 6, 525–533.

Sinha, M., K. Kumar and P. K. Kalra (2000). Some
new neural network architectures with improved
learning schemes. Softcomputing 4(4), 214–233.

Sinha, M., M. M. Gupta and P. N. Nikiforuk (2001).
A compensatory wavelet neuron model. Joint 9th
IFSA World Congress and 20th NAFIPS Interna-
tional Conference, Vancouver B.C. Canada, July
25- July 28, 2001, paper No. 243, pp. 1372-1376.

Yamakawa, T., E. Uchino and T. Samatsu (1994).
Wavelet neural network employing over-
complete number of compactly supported non-
orthogonal wavelets and their applications. in
Proceeding of IEEE International Conference on
Neural Networks, June 28 - July 2 pp. 1391–
1396.

