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Abstract: A new control approach to position synchronization of multiple motion axes is
developed, by incorporating cross-coupling technology into adaptive control design. The
strategy is to stabilize position tracking of each axis while causing differential position errors
between each axis and the other two axes converge to zero. If motions of every pair of axes
are synchronized, motions of all axes are synchronized accordingly. The proposed adaptive
controller and parameter adaptor employ coupling control by feeding back the position error
of each axis and differential position errors between this axis and the other two axes. The
proposed algorithm guarantees asymptotic convergence to zero of both position errors and
synchronization errors. Simulation results demonstrate the effectiveness of the method, where
the system is subject to different dynamic model parameters of motion axes, plant parameter
variation, and external disturbances.
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1. INTRODUCTION

Interest in synchronization of multiple number of mo-
tion axes or motors has grown recently in modern
manufacturing. In the control of surface mounting
technology (SMT) machineries or machine tools, for
example, there exists increasing demand to drive mul-
tiple motion axes simultaneously for rapid develop-
ment. Poor synchronization of relevant motion control
axes results in diminished dimensional accuracy of the
work-piece or even in unusable products (Tomizuka
et al., 1992). In 1980s, Koren (1980) proposed the
cross-coupling concept to solve the synchronization
problem. The effort of using the cross-coupling tech-
nology to improve synchronization performance of

1 The work described in this paper was partially supported by a
grant from the Research Grants Council of the Hong Kong Special
Administrative Region, China [Project No. CityU 1085/01E].

two-axis motions includes Kulkarni and Srinivasan
(1990), Tomizuka et al. (1992), and Koren and Lo
(1992). Other approaches include fuzzy logic coupling
control (Moore and Chen, 1995) and neuro-controller
for synchronization (Lee and Jeon, 1998).

Adaptive control is an effective strategy used to ad-
dress the synchronization problem. Tomizuka et al.
(1992) designed and implemented an adaptive feed-
forward controller for speed synchronization of two
motion axes, which was followed by Kamano et al.
(1993) and Yang and Chang (1996). However, the
feedforward adaptive synchronization deals with ve-
locity synchronization only, and fails to address posi-
tion synchronization problem. On the other hand, most
of approaches mentioned above focused on two-axis
synchronization. There exists increasing demand for
developing a new control algorithm that can address
position synchronization of multiple axes. This is re-
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quired by considerable industrial applications such as
operations of machine tools or SMT machines.

In this study, a new adaptive coupling control algo-
rithm is developed for position synchronization of
multiple axes. The cross coupling technology is incor-
porated into adaptive control design through feedback
of position errors and synchronization errors in the
controller and the parameter adaptor. Synchronization
errors are defined to be differential position errors of
every pair of axes. Including all synchronization errors
in the controller formulation for each axis results in
intensive on-line computation work, especially when
the number of axes is large. Therefore, the synchro-
nization strategy proposed in this study is to stabi-
lize synchronization errors between each axis and the
other two axes (but not all other axes) to zero. This
is based on an assumption that motion of all axes are
synchronized if every pair of axes are synchronized. It
is proved in theory that the proposed algorithm guar-
antees asymptotic convergence to zero of both position
errors and synchronization errors, which has yet to be
reported in the literature. Simulation results demon-
strate the effectiveness of the proposed method, where
the system is subject to different dynamic model pa-
rameters of motion axes, plant parameter variation,
and external disturbances.

2. STRATEGY OF MULTI-AXIS
SYNCHRONIZATION

Consider a motion control system with n axes. The
dynamics of the ith axis is described by

Hi(xi)�xi(t) + Ci(xi; _xi) _xi(t) + Fi(xi; _xi) = �i(1)

where xi(t) denotes the motion coordinate of the ith
axis, Hi(xi) and Ci(xi; _xi) are terms representing
inertia and nonlinear effect of the ith axis. (Note that
1

2
_Hi(xi) � Ci(xi; _xi) = 0.) Fi(xi; _xi) denotes the

external disturbance. �i is the input torque.

Define �i as the vector containing unknown model
parameters in (1). Then, the dynamics (1) can be
rearranged in terms of �i, i.e.,

Hi(xi)�xi(t) + Ci(xi; _xi) _xi(t) + Fi(xi; _xi)

= Yi(xi; _xi; �xi)�i = �i (2)

where Yi(xi; _xi; �xi) denotes a regression matrix. Since
the value of the dynamic parameter � i is hard to be
known exactly in practice, one defines �̂i(t) as the
estimate of �i.

Define the position tracking error of the ith axis as

ei(t) = x
d

i (t)� xi(t) (3)

where x
d

i
(t) denotes the desired position of the ith

axis. In addition to causing ei(t) ! 0 in position

tracking, it is aimed to achieve the following goal for
motion synchronization:

e1(t) = e2(t) = � � � = en(t) (4)

Define synchronization errors of every two axes with
adjacent sequence numbers as

�1(t) = e1(t)� e2(t)

�2(t) = e2(t)� e3(t) (5)
...

�n(t) = en(t)� e1(t)

Obviously, if �i(t) = 0 for all i = 1 � n, the goal of
multi-axis synchronization of (4) can be achieved.

Now the control objective is defined to design con-
trol torques �i to cause position errors ei(t) and syn-
chronization errors �i(t) converge to zero. Unlike tra-
ditional non-synchronized control that only concerns
the convergence of position tracking errors e i(t), here
one additionally concerns how these position errors
converge to zero so that (4) holds. To meet this re-
quirement, the control design of each axis needs to
consider motion responses of the other axes. Note
that incorporating motion responses of all axes into
the controller formulation of each axis may result in
intensive on-line computation work, especially when
the number n is large. It is necessary to propose a con-
trol strategy that is able to synchronize multiple axes
with the least number of axes involved in each axis
control, for feasible implementation. For this purpose,
the following strategy is proposed in this study:

Strategy: The control torque of each axis is designed
to stabilize the position tracking of this axis while
synchronizing motions between this axis and two other
axes. Specifically, the control torque �i for the ith axis
is to control ei(t) ! 0 and at the same time, to
synchronize motions of the (i� 1)th axis, the ith axis,
and the (i + 1)th axis, so that synchronization errors
�i�1(t) and �i(t) converge to zero.

Under the above strategy, motions of all axes are syn-
chronized. The control of each axis only additionally
considers motion responses of two other axes, but
not all other axes, for synchronization. This signifi-
cantly simplifies the implementation especially when
the number of axes is large.

3. CONTROL DESIGN

Under the proposed synchronization strategy, the ith
axis controller not only controls the position tracking
of the ith axis but also synchronizes motions of the ith
axis, the (i�1)th, and the (i+1)th axes. Accordingly,
a new concept named coupled position error, denoted



by e
�

i
(t), is introduced here. e�

i
(t) contains the posi-

tion error ei(t) and synchronization errors �i(t) and
�i�1(t), i.e.,

e
�

1(t) = e1(t) + �

tZ

0

(�1(w) � �n(w))dw

e
�

2(t) = e2(t) + �

tZ

0

(�2(w) � �1(w))dw (6)

...

e
�

n
(t) = en(t) + �

tZ

0

(�n(w) � �n�1(w))dw

where � is a positive coupling parameter. Note that
the synchronization error �i(t) appears in e

�

i
(t) and

e
�

i+1(t) with opposite sign. As a result, e
�

i
(t) and

e
�

i+1(t) are driven in opposite directions regarding
�i(t), which is helpful to removal of the synchroniza-
tion error �i(t).

Define command vectors ui(t) as

u1(t) = _xd1(t) + �(�1(t)� �n(t)) + �e�1(t)

u2(t) = _xd2(t) + �(�2(t)� �1(t)) + �e�2(t) (7)
...

un(t) = _xd
n
(t) + �(�n(t)� �n�1(t)) + �e�

n
(t)

where _xd
i
(t) denotes the desired velocity of the ith

axis, and � is a positive number. Definition of u i(t)
in (7) leads to following vectors regarding coupled
position/velocity errors

ri(t) = ui(t)� _xi(t) = _e�
i
(t) + �e�

i
(t) (8)

The objective is to design control torques � i(t) to
restrict ri(t) to lie on the sliding surface, so that the
coupled errors e�

i
(t) and _e�

i
(t) tend to zero.

Design torque inputs as

�1 = Ĥ1(x1) _u1(t) + Ĉ1(x1; _x1)u1(t) + F̂1(x1; _x1)

+krr1(t) + k�(�1(t)� �n(t))

= Y1(x1; _x1; u1; _u1)�̂1(t) + krr1(t)

+k�(�1(t)� �n(t))

�2 = Ĥ2(x2) _u2(t) + Ĉ2(x2; _x2)u2(t) + F̂2(x2; _x2)

+krr2(t) + k�(�2(t)� �1(t))

= Y2(x2; _x2; u2; _u2)�̂2(t) + krr2(t)

+k�(�2(t)� �1(t)) (9)
...

�n = Ĥn(xn) _un(t) + Ĉn(xn; _xn)un(t) + F̂n(xn; _xn)

+krrn(t) + k�(�n(t)� �n�1(t))

= Yn(xn; _xn; un; _un)�̂n(t) + krrn(t)

+k�(�n(t)� �n�1(t))

where Ĥi(xi), Ĉi(xi; _xi) and F̂i(xi; _xi) are estimates
of Hi(xi), Ci(xi; _xi) and Fi(xi; _xi), respectively. kr
and k� are positive control gains. Note that the regres-
sion matrix Yi(xi; _xi; ui; _ui) is now a function of ui(t)
and _ui(t) rather than �xi(t). The estimated parameter
�̂i(t) is subject to the adaptation law

_̂
�i(t) = �iY

T

i (xi; _xi; ui; _ui)ri(t) (10)

where �i is a positive diagonal control gain. Define
~�i(t) = �i � �̂i(t) as a bounded vector containing
model estimation errors. The adaptation law (10) can
then be rewritten by

_~�i(t) = ��iY
T

i
(xi; _xi; ui; _ui)ri(t) (11)

Substituting (9) into the dynamic model (2) leads to
the following closed-loop dynamics

H1(x1) _r1(t) + C1(x1; _x1)r1(t) + krr1(t)

+k�(�1(t)� �n(t)) = Y1(x1; _x1; u1; _u1)~�1(t)

H2(x2) _r2(t) + C2(x2; _x2)r2(t) + krr2(t)

+k�(�2(t)� �1(t)) = Y2(x2; _x2; u2; _u2)~�2(t) (12)
...

Hn(xn) _rn(t) + Cn(xn; _xn)rn(t) + krrn(t)

+k�(�n(t)� �n�1(t)) = Yn(xn; _xn; un; _un)~�n(t)

Theorem 1 The proposed adaptive coupling con-
trollers (6) � (11) guarantee asymptotic convergence
to zero of both position errors and synchronization
errors, i.e., ei(t)! 0 and �i(t)! 0 as time t!1.

Proof:

Define a positive definite function as

V (t) =

nX
i=1

[
1

2
Hi(xi)r

2
i (t) +

1

2
~�Ti (t)�

�1

i
~�i(t) +

1

2
k��

2
i (t)]

+
1

2
k���(

tZ

0

(�1(w)� �n(w))dw)
2

+

nX
i=2

1

2
k���(

tZ

0

(�i(w)� �i�1(w))dw)
2 (13)

Differentiating V (t) with respect to time yields

_V (t) =

nX
i=1

[rTi (t)Hi(xi) _ri(t) +
1

2
r
T

i (t) _Hi(xi)ri(t) +

~�T
i
(t)��1

i

_~�i(t) + �i(t)k� _�i(t)] +

(�1(t)� �n(t))k���

tZ

0

(�1(w) � �n(w))dw



+
nX

i=2

(�i(t)� �i�1(t))k���

tZ

0

(�i(w) � �i�1(w))dw (14)

Multiplying both sides of the closed-loop equations
in (12) by ri(t) and then substituting the resulting
equations into (14) yields

_V (t) =

nX
i=1

[�krr
2
i
(t) + ri(t)Yi(xi; _xi; ui; _ui)~�i(t) +

~�T
i
(t)��1

i

_~�i(t) + �i(t)k� _�i(t)]�

n�1X
i=1

(ri(t)

�ri+1(t))k��i(t) � (rn(t) � r1(t))k��n(t) +

(�1(t) � �n(t))k���

tZ

0

(�1(w)� �n(w))dw + (15)

nX
i=2

(�i(t) � �i�1(t))k���

tZ

0

(�i(w)� �i+1(w))dw

Utilizing the adaptation law (11), one obtains

rT
i
(t)Yi(xi; _xi; ui; _ui)~�i(t) + ~�T

i
(t)��1

i

_~�i(t) = 0 (16)

In view of equations (5), (6) and (8), one obtains

r1(t) � r2(t) = _�1(t) + ��1(t) + �(2�1(t) � �2(t) � �n(t))

+��

tZ

0

(2�1(w)� �2(w)� �n(w))dw

r2(t) � r3(t) = _�2(t) + ��2(t) + �(2�2(t) � �3(t) � �1(t))

+��

tZ

0

(2�2(w)� �3(w)� �1(w))dw (17)

...

rn(t) � r1(t) = _�n(t) + ��n(t) + �(2�n(t) � �1(t) � �n�1(t))

+��

tZ

0

(2�n(w)� �1(w)� �n�1(w))dw

As a result,

n�1X
i=1

(ri(t) � ri+1(t))k��i(t) + (rn(t) � r1(t))k��n(t)

=

nX
i=1

[�T
i
(t)k� _�i(t) + k���

2
i
(t)] +

n�1X
i=1

k��((�i(t) � �i+1(t))
2

+k��(�n(t) � �1(t))
2 +

(�1(t) � �n(t))k���

tZ

0

(�1(w)� �n(w))dw +

nX
i=2

(�i(t) � �i�1(t))k���

tZ

0

(�i(w)� �i+1(w))dw (18)

Substituting (16) and (18) into (15) yields

_V (t) =�

nX
i=1

[krr
2
i
(t) + k���

2
i
(t)]�

n�1X
i=1

k��(�i(t)

��i+1(t))
2
� k��(�n(t)� �1(t))

2

� 0 (19)

Since ri(t) and �i(t) appear in (19), they are bounded
in terms ofL2 norm. When ri(t) is bounded, _e�

i
(t) and

e
�

i
(t) are further bounded from (8), and so are _e i(t)

from differentiating (6). Thus, _� i(t) are bounded from
(5). From (12), one knows that _r i(t) are bounded as
well. Therefore, ri(t) and �i(t) are uniformly continu-
ous since _ri(t) and _�i(t) are bounded. From Barbalat’s
lemma, ri(t) ! 0 and �i(t) ! 0 as time t ! 1. It
then follows from (8) that e�

i
(t) ! 0 and _e�

i
(t) ! 0

as t!1.

When �i(t) = 0 for all i = 1 � n, the goal (4) is
achieved. To examine the position tracking stabiliza-
tion, one combines all equations in (6) to obtain

e1(t) + e2(t) + � � �+ en(t)

= e
�

1(t) + e
�

2(t) + � � �+ e
�

n
(t) = 0 (20)

Substituting (4) into (20) yields

e1(t) = e2(t) = : : : = en(t) = 0

Therefore, the invariant set of the closed-loop dynam-
ics (12) in the set 
 = f(xi; _xi) : _V (t) = 0g
contains zero position errors, namely e i(t) = 0. Using
LaSalle’s theorem, one finally concludes that e i(t) !
0 as time t!1. 2

The advantage of the proposed adaptive coupling con-
troller over conventional controllers without synchro-
nization lies in the ability to regulate the relationship
of coordinates during tracking process. In other words,
the proposed algorithm concerns not only whether
position errors ei(t) ! 0, but also how these errors
converge to zero so that e1(t) = e2(t) = � � � = en(t).
Although the independent control without synchro-
nization also ensures that position errors ei(t) ! 0
and hence �i(t)! 0 eventually, they cannot guarantee
satisfactory transient performance of synchronization.

4. SIMULATIONS

To demonstrate the proposed approach, simulations
were performed on a four-axis system in which mo-
tion synchronization is required. The desired tracking
trajectory of each axes is specified by

x
d

i = xi(0) + (xi(f)� xi(0))(1� exp(�t))

where xi(0) and xi(f) denote the initial and the final
desired coordinates of each axis, respectively. In the
simulation, one selected

x1(0) = x2(0) = x3(0) = x4(0) = 0



x1(f) = x2(f) = x3(f) = x4(f) = 1

The estimated parameter vectors were set to be zero
for all axes at the initial time. The control gains are
chosen to be: � = 4, kr = 500, � = 50, k� = 10, and
�i = diagf0:2g.

Firstly, the algorithm was tested on the system with
different dynamic model parameters in four axes, i.e.,
H1 = C1 = 10, H2 = C2 = 9, H3 = C3 = 8,
and H4 = C4 = 7. One assumed that there was
no external disturbance during the motion, namely
F1 = F2 = F3 = F4 = 0. Figure 1 illustrates
position tracking errors of four axes with the proposed
adaptive coupling control. Besides good convergence
of the position tracking in each axis, there appears
satisfied performance in position synchronization of
four axes. Figure 2 illustrates position tracking errors
with conventional adaptive control without synchro-
nization (namely � = 0 and k� = 0), for comparison.
Although good position tracking occurs in each axis,
there appears worse transient performance of synchro-
nization compared with that in Figure 1. Note that
here synchronization errors are caused by different
dynamic model parameters of axes. Figure 3 illus-
trates comparison of position synchronization errors
of four axes (i.e., �1(t) � �4(t)), between the pro-
posed adaptive coupling control (solid lines) and the
independent adaptive control without synchronization
(dashdot lines). It is clearly shown that the proposed
coupling controller can effectively address the posi-
tion synchronization problem in a multi-axis system,
in which dynamic model parameters are different in
each axis.

One further tested the algorithm by adding a torque
disturbance to axis 1 during the motion. The distur-
bance was applied to axis 1 from 0:5 second to 0:7
second, which caused the change of position track-
ing as shown in Figures 4 and 5. It is seen that the
disturbance with the proposed method has less influ-
ence to position synchronization than that with the
independent control without synchronization. Figure
6 illustrates comparison of position synchronization
of four axes between the proposed adaptive coupling
control (solid lines) and the independent adaptive con-
trol (dashdot lines). Obviously, the proposed method
exhibits significant improvement in position synchro-
nization when the system is subject to the disturbance.

5. CONCLUSIONS

A new adaptive coupling control algorithm has been
proposed for position synchronization of multiple mo-
tion axes. Synchronization errors in this study are de-
fined to be differential position errors of every pair of
axes. The synchronization strategy is to stabilize po-
sition tracking of each axis while causing differential
position errors between the axis and the other two axes

converge to zero. The proposed adaptive control al-
gorithm employs the cross-coupling technology in the
design of the controller and the parameter adaptor. The
proposed method guarantees asymptotic convergence
to zero of both position and synchronization errors.
Simulation results demonstrate the effectiveness of the
approach in position synchronization, where the sys-
tem is subject to different dynamic model parameters
of motion axes, plant parameter variation, and external
disturbances.
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Fig. 1. Position tracking errors of four axes with
adaptive coupling control
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Fig. 2. Position tracking errors of four axes with
independent adaptive control
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Fig. 3. Synchronization errors with adaptive coupling
and independent controls
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Fig. 4. Position tracking errors of four axes with
adaptive coupling control (with disturbance)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

p
o
si

tio
n
  
e
rr

o
rs

  
(m

)

time  (sec)

e
1

e
2

e
3

e4 

Fig. 5. Position tracking errors of four axes with
independent adaptive control (with disturbance)
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Fig. 6. Synchronization errors with adaptive coupling
and independent controls (with disturbance)


