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Abstract: This paper presents the design and simulation of adaptive control for a two
input – two output system together with the real – time control of a laboratory model
using this designed method. The synthesis is based on a polynomial approach.
Decoupling, where the compensator is placed ahead of the system, suppresses the
interactions between control loops. The results of the simulation and the real-time
experiments are also given. Copyright © 2002 IFAC
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1  INTRODUCTION

Many technological processes require that several
variables relating to one system are controlled
simultaneously. Each input may influence all  system
outputs. The design of a controller able to cope with
such a system must be quite sophisticated. There are
many different methods of controlling multivariable
systems. Several of these use decentralized PID
controllers (Luyben 1986), others apply single input-
single-output (SISO) methods extended to cover
multiple inputs (Chien et al. 1987). Here decoupling
methods are used to transform the multivariable
system into a series of independent SISO loops
(Krishnawamy et al. 1991, Tade et al. 1986,
Wittenmark et al. 1987, Skogestad and Postlethwaite
1996).

This paper is organized as follows: Section 2 presents
the controlled model; Section 3 describes how
feedback control without decoupling is designed;
Section 4 describes two decoupling methods; Section
5 describes the system identification method; Section
6 gives the simulation results; Section 7 contains the
experimental results; finally, Section 8 concludes the
paper.

2  A DESCRIPTION OF A TWO INPUT – TWO
OUTPUT SYSTEM

The internal structure of the the system is shown in
Fig. 1

Fig. 1 A two input – two output system  –  the “P”
structure

The transfer matrix of the system is
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We can assume that the system is described by the
matrix fraction
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Where polynomial matrices A∈∈∈∈R22[z-1], B∈∈∈∈R22[z-1]
are the left indivisible decomposition of matrix G(z-1)
and matrices A1∈∈∈∈R22[z-1], B1∈∈∈∈R22[z-1] are the right
indivisible decomposition.

The matrices of our discrete model are
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and the differential equations of the model are
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3  DESIGNING FEEDBACK CONTROL

Fig. 2  Block diagram of the closed loop system

In the same way as the controlled system, the transfer
matrix of the controller takes the form of matrix
fraction
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The matrix of an integrator for permanent zero
control error is
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The control law apparent in the block diagram
(operator z-1 will be omitted from some operations for
the sake of simplification) has the form
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We can derive the following equation for the system
output
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which can be modified to give
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The closed loop system is stable when the following
diophantine equation is satisfied

MBQPAF =+ 11                        (10)

where M(z-1)∈R22[z-1] is a stable diagonal polynomial
matrix.
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The roots of this polynomial matrix are the ruling
factor in the behaviour of the closed loop system.
They must be inside the unit circle if the system is to
be stable.

The product AFP1 is dimensionally correct if the
number of inputs is equal to the number of outputs.

The degree of the controller matrices polynomials
depends on the internal properness of the closed loop.
The structure of matrices P1 and Q1 was chosen so
that the number of unknown controller parameters
equals the number of algebraic equations resulting
from the solution of the diophantine equation using
the uncertain coefficients method.
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The solution to the diophantine equation results in a
set of sixteen algebraic equations with unknown
controller parameters. We obtain the controller
parameters by solving these equations.

4   DESIGNING  DECOUPLING CONTROL
USING COMPENSATORS

There are several ways to control multivariable
systems with internal interactions. Some make use of
decentralized PID controllers, whilst others are
composed of a string of single input – single output
methods.

 One possibility is the serial insertion of a
compensator ahead of the system (Krishnawamy et
al. 1991, Peng 1990, Tade et al. 1986, Wittenmark et
al. 1987). The aim here is to suppress of undesirable
interactions between the input and output variables so
that each input affects only one controlled variable.

Fig. 3  A Closed loop system with compensator

The resulting transfer function H is then given by

KGH =                                   (13)

The decoupling conditions are fulfilled when matrix
H is diagonal.



Several well – known compensators are given in
(Krishnawamy et al. 1991, Peng 1990, Tade et al.
1986, Wittenmark et al. 1987). Control algorithms
were derived for the model above with two
compensators. These will be referred to as C1 and C2.

Compensator C1 is the inversion of the controlled
system. Matrix H is,therefore, a unit matrix.

Fig. 4  The closed loop system with compensator C1

This block diagram leads to an equation for the
system output which takes the form

( ) WPQQFPPY 1
11

1
111

−−+=                 (14)

The following equation must be satisfied if the closed
loop system is to be stable

MQFP =+ 11                              (15)

The structure of the polynomial matrices of the
controller were chosen to suit physical demands.
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Consequently, matrix M was chosen to be
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The controller parameters are the result from the
equation (15). The control law can be described by
matrix equation
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This controller is unsuitable for non – minimum
phase systems.

Compensator C2 is adjugated matrix B. When C2 was
included in the design of the closed loop the model
was simplified by considering matrix A as diagonal.
The multiplication of matrix B and adjugated matrix
B results in diagonal matrix H. The determinants of
matrix B represent the diagonal elements. When
matrix A is nondiagonal, its inverted form must be
placed ahead of the system in order to obtain
diagonal matrix H, otherwise it may increase the
order of the controller and sophistication of the
closed loop system. Although designed for a diagonal
matrix, compensator C2 also improves the control
process for non – diagonal matrix A in the controlled
system. This is demonstrated in the simulation
results.

Fig. 5 The closed loop system with compensator C2

The equation for the system output as shown in this
block diagram takes the form
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To achieve stability in the closed loop system the
following diophantine equation must be fulfilled

MQBAFP =+ 11 v                          (21)

The controller polynomial matrices are chosen as
shown below
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and matrix M is
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Solving the diophantine equation defines a set of
algebraic equations which we subsequently use to
obtain the unknown controller parameters.

The control law is given by the block diagram
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5  IDENTIFICATION

The algorithms designed here were incorporated into
an adaptive control system with recursive
identification. The recursive least squares method
proved effective for self-tuning controllers (Kulhavý
1987) and was used as the basis for our algorithm.
For our two-variable example we considered the
disintegration of identification into two independent
parts.

The parameter vectors are completed as shown
below:



( ) [ ]432143211 b,b,b,b,a,a,a,akT =Θ              (25)
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The data vector is
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The parameter estimates are actualized using the
recursive least squares method plus directional
forgetting.

6  SIMULATION

Matlab + Simulink for Windows (The MathWork,
Inc.) were used to create a program and diagrams to
simulate and verify the algorithms. Verification by
simulation was carried out on a range of systems with
varying dynamics. The control of the model below is
given here as our example.
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 Fig. 6 shows the system‘s step response

Fig. 6  The step response of the system

The right side control matrices are denoted as
follows: without compensator - M1, with
compensator C1 - M2, and with compensator C2 - M3.

( ) ( )
( ) 










−
−=

−

−
−

41

41
1

1
1,010
01,01

z
zzM         (28)

( )












−
−= −

−
−

1

1
1

2 1,010
01,01

z
zzM

( ) ( )
( ) 










−
−=

−

−
−

51

51
1

3
1,010
01,01

z
zzM

The same initial conditions for system identification
were used for all the types of adaptive control we
tested. The initial parameter estimates were chosen to
be

( ) [ ]4.03.02.01.04.03.02.01.001 ,,,,,,,T =Θ       (29)

( ) [ ]8.07.06.05.0,8.07.06.05.002 ,,,,,,T =Θ

The results of simulation are shown in Figs 7 – 12.

We can draw several conclusions from the simulation
results of our experiments on linear static systems.
The basic requirement to ensure permanent zero
control error was satisfied in all cases. The criteria on
which we judge the quality of the control process are
the overshoot on the controlled values and the speed
with which zero control error is achieved. According
to these criteria the controller incorporating
compensator C1 performed the best. However, this
controller appears to be unsuited to adaptive control
due to the size of the overshoot and the large spread
of process and controller outputs. The controller
which uses compensator C2 seems to work best in
adaptive control. With regards to decoupling, it is
clear that controllers with compensators greatly
reduce interaction.

Fig. 7  Deterministic control without compensator

Fig. 8  Adaptive control without a compensator



Fig. 9  Deterministic control with compensator C1

Fig. 10   Adaptive control with compensator C1

Fig. 11  Deterministic control with compensator C2

Fig. 12  Adaptive control with compensator C2

7  VERIFICATION – CONTROLLING A
LABORATORY MODEL

Suggested controllers has been verified for the
control of the laboratory through – flow air heater
(Fig. 13). This laboratory equipment is two input –
two output system. Manipulated variables are the
heat source (electric resistance heating 2) and the air
flow source (ventilator 1). Controlled variables are
the air temperature, measured by resistance
thermometer 4 and air flow, measured by flow speed
indicator (position 7). The air flow can be changed
with the throttle valve (position 5). The task was to
apply the methods we designed for the adaptive
control of a model representing a non-linear system
with variable parameters which is, therefore,
impossible to control deterministically.

 Fig. 13  Laboratory through – flow air heater
 1 – ventilator, 2 – electric resistance
heating , 3 – pressure sensor, 4 – resistance
thermometer, 5 – throttle valve, 6 – cover of
tunnel, 7 – flow indicator

Fig. 14  Adaptive control of the real model using
compensator C2



Fig. 15  The adaptive control of a real model using
compensator C2– controller output

Adaptive control using recursive identification both
with and without the use of compensators was
performed. As indicated in the simulation,
compensator C1 was shown to be unsuitable and
control broke down. The other two methods gave
satisfactory results. The time responses of the control
for both cases are shown in Fig. 14, Fig. 15, Fig. 16
and Fig. 17. The figures demonstrate that control
with a compensator reduces interaction. The
controlled variable y1 is the air temperature and the
controlled variable y2 is the air flow. The
manipulated variable u1 is the heat source and the
manipulated variable u2 is the air flow source.

Fig. 16  Adaptive control of the real model without a
compensator

Fig. 17  Adaptive control of the real model without a
compensator – controller output

8  CONCLUSIONS

The adaptive control of a two-variable system based
on polynomial theory was designed. Decoupling
problems were solved by the use of compensators.
The designs were simulated and used to control a
laboratory model. The simulation results proved that
these methods are suitable for the control of linear
systems. The control tests on the laboratory model
gave satisfactory results despite the fact that the non-
linear dynamics were described by a linear model.
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