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Abstract: The longitudinal control of the fighter with dual control surfaces is a
typical MIMO control problem, where various modern control design techniques are
employed. Although Coefficient Diagram Method (CDM) is proven effective in
SISO or SIMO control design, the concrete procedure for MIMO design is not
established yet. A trial design by CDM is made for this MIMO problem and the
result is compared with the standard H-inf or H2 design.  Copyright © 2002 IFAC
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1. INTRODUCTION

At present, LQR and H-infinity are the most popular
control design procedures for MIMO (Multi-Input-
Multi-Output) system. However these methods are
not up to expectation for practical application in
aerospace community due to the following reasons.
 (1) Parameter tuning procedures are not provided.
 (2) Weight selection rules are not established.
 (3) The controller order is unnecessarily high.
 (4) Robustness is guaranteed only for predefined
      ones.
 (5) Some times, traditionally accepted good
      controllers are excluded.
 (6) Extension to gain scheduling or inclusion of
      proper saturation of state variable is difficult.
Thus classical control design by experienced
engineer is still common in aerospace industry.
However due to the difficulty in inheriting such
experiences, some improvement is keenly needed.

The classical control and modern control are
commonly used in control design, but there is a third
approach generally called as algebraic design
approach. The Coefficient Diagram Method (CDM)
is one of the algebraic design approaches, where the
coefficient diagram is used instead of Bode diagram,
and the sufficient condition for stability by Lipatov
constitutes its theoretical basis.

The CDM has been proved effective in number of
examples, but they are SISO (Single-Input-Single-
Output), or SIMO (Single-Input-Multi-Output)
(Manabe, 1998b). The procedures for MIMO have
not been established yet, and some trial designs are
being made (Manabe, 2000). Usual approach is to
decompose MIMO problems into series of SISO or
SIMO problems, and to proceed the design by
standard CDM procedure. In such decomposition, a
good CAD system to handle polynomial matrix is
indispensable, and Polynomial Toolbox developed in
Europe has been a great help (Kwakernaak, 2000).

The purpose of this paper is to present one example
of MIMO design by CDM. In order to make the
comparison with other approaches, the problem is
taken from the well-known example of the
longitudinal control of a modern fighter in Robust
Control Toolbox of MATLAB (Chiang, 1994).

This paper is organized as follows: In Section 2, the
basics of CDM are briefly explained. In Section 3,
the mathematical model and the problem statement
are presented. In Section 4, the basic control structure
is determined based on coefficient diagram analysis.
In Section 5, feedback controllers are designed as
SISO problems by CDM. In Section 6, simulation
results are shown. In Section 7, the comparison is
made with the H-inf controller.
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2. BASICS OF CDM

The CDM is an algebraic control design approach
with the following five features (Manabe, 1998b).
 (1) Polynomials and polynomial matrices are used

 for system representation.
 (2) Characteristic polynomial and controller are

 simultaneously designed.
 (3) Coefficient diagram is effectively utilized.
 (4) The sufficient condition for stability by

 Lipatov (1978) constitutes the theoretical basis
 of CDM (Manabe, 1999).

 (5) Kessler (1960) standard form is improved and
 used as the standard form of CDM.

CDM design is based on the stability index and
equivalent time constant as defined later. Thus for the
specified settling time, a controller of the lowest
order with the narrowest bandwidth and of no-
overshoot can be easily designed. CDM can be
considered as �Generalized PID�, because the
controller can be more complex than PID, and more
reliable parameter selection rules are provided. Also
CDM can be considered as �Improved LQG�,
because the order of controller is smaller and weight
selection rules are also given (Manabe, 1998a).

The characteristic polynomial )(sP  is given in the
following form.
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The stability index γi, the equivalent time constant τ,
and the stability limit γi

* are defined as follows.
2

1 1/ ( )i i i ia a aγ + −= ,   1~1 −= ni ,                 (2)

01 /aa=τ ,                   (3)

11
* /1/1 −+ += iii γγγ ,                   (4)

  nγ and 0γ are defined as ∞ .
The characteristic polynomial is expressed by 0a , τ ,
and γi as follows:
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The sufficient condition for stability and instability
constitutes the theoretical basis of CDM. It states as
follows:
"The system of any order is stable, if all the partial
4th order polynomials are stable with the margin of
1.12.  The system is unstable if some partial 3rd
order polynomial is unstable."
Thus the sufficient condition for stability is given as     
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*12.1 ii γγ > , 2~2 −= niallfor .        (6b)
The sufficient condition for instability is given as
   121 −++ ≤ iiii aaaa ,                  (7a)
    11 ≤+ ii γγ , 2~1 −= nisomefor .             (7b)

These conditions are graphically expressed in the
coefficient diagram, and the designer can intuitively
assess the stability of the system (Manabe, 1998b).

In CDM, the following stability indices are
recommended.

1 3 2 1... 2, 2.5nγ γ γ γ− = = = = = .          (8a)
For more relaxed form, with very small sacrifice of
stability,

*1.5 , 1 ~ 4i i i nγ γ> = −

3 2 12, 2.5γ γ γ= = = .                            (8b)
In these cases, the step response has no overshoot,
and the settling time is about 2.5~3τ .

3.  MATHEMATICAL MODEL AND PROBLEM
STATEMENT

The problem selected is the longitudinal control of a
modern fighter, shown in Fig. 1 (Chiang, 1994)
(Safonov, 1981, 1988). This aircraft is trimmed at
25000 ft and 0.9 Mach. The linear model in state
space expression is given as follows, where the
MATLAB type expression is adopted, such that
vector [2 4 5]T is expressed as [2; 4; 5].

[ ; ; ; ; ; ] [ ; ; ; ; ; ] [ ; ]e c g e c g e cV q A V q B u uδ α θ δ δ δ α θ δ δ= +" " " "" " ,
[ ; ] [ ; ; ; ; ; ] [ ; ]g e c g e cC v q D u uα θ δ α θ δ δ= + ,

0.022567 36.617 18.897 32.090 3.2509 0.76257
9.2572 5 1.8997 0.98312 7.2562 4 0.17080 0.49652 3
0.012338 11.720 2.6316 8.7582 4 31.604 22.396

0 0 1 0 0 0
0 0 0 0 30 0
0 0 0 0 0 30

g

e e e
e

A

− − − − − 
 − − − − − − − 
 − − −

=  
 
 − 
 − 

,

[0 0; 0 0; 0 0; 0 0; 30 0; 0 30]gB = ,
[01 0 0 0 0; 0 0 01 0 0]gC = ,   [ 0 0; 0 0]gD = .        (9)

The state variables are velocity deviation ( Vδ ),
angle of attack (α ), attitude rate ( q ), attitude angle
(θ ), elevon angle ( eδ ), and canard angle ( cδ ). The
output variables are α  and θ . The control input
variables are elevon actuator input ( eu ) and canard
actuator input ( cu ).

By the use the of two control inputs, the non-
conventional precision flight path control becomes
possible. Vertical translation mode keeps θ  while
varying α . Pitch pointing mode keeps both α  and
θ . Direct lift mode keeps α  while varying θ . The
stated objective of the control is interpreted as
making α  and θ  to follow the respective commands
( andr rα θ ).

The more precise design specification is given in
singular value specification as follows:
 (1) Robustness Spec.: -40 dB/decade roll-off and at
    least �20 dB at 100 rad/sec.
 (2) Performance Spec.: Minimize the sensitivity
    function as much as possible.



These specifications will be interpreted in the terms
of CDM in the later section.

In order to make CDM MIMO design, the plant has
to be expressed in a proper polynomial matrix
fraction (PMF). In ordinary MIMO problem, right
PMF is used for the plant and left PMF is used for
the controller. But in this problem, left PMF is used
for the plant, too. There are infinite numbers of left
PMF, but only physically meaningful left PMF is to
be used in CDM.

When actuator dynamics are moved to controller, the
control inputs becomes eδ  and cδ . Also q  is
replaced by sθ , and Vδ is eliminated from the
equation. The left PMF is given as follows.

( )[ ; ] ( )[ ; ]p u e cA s B sα θ δ δ= ,                             (10)
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   11 1.9876pa s= + ,

   2
12 0.0075030 1.0029 0.00073219pa s s= − − + ,

   21 11.72 0.18730pa s= − + ,

   3 2
22 2.6542 0.29166 0.39591pa s s s= + + +

   11 0.066325ub = ,    12 0.17300ub = − ,
   21 31.604 0.67310ub s= − − ,
   22 22.396 0.49600ub s= + .

In order to make design easier fictitious inputs *
eδ

and *
cδ  are introduced, such that

   * *( )[ ; ] ( )[ ; ]u e c p e cB s B sδ δ δ δ= ,                    (11)
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   12 12p ub b= ,    21 21p ub b= .

Then the following relation is derived.
   * *[ ; ] [ ; ]e c e cEδ δ δ δ= ,                    (12)

   1 1.3730 0.97298
( ) ( ) ( )

0.52638 1.3730u pE B s B s s−  
= = + ∆ 

 
.

In this equation ( )s∆  can be neglected, because it is
very small.

Thus the plant model for CDM design is obtained as
follows:
   * *( )[ ; ] ( )[ ; ]p p e cA s B sα θ δ δ= .                 (13)

Because the outputs of the designed controller are
*
eδ and *

cδ , the following conversion is necessary to
obtain actual control inputs eu  and cu .
   * *[ ; ] [ ( / 30 1) ; ( / 30 1) ]e c e cu u E s sδ δ= + + .   (14)

Because ( )pB s  is a simple skew diagonal form
design becomes much simpler.
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Fig. 1.  Fighter model

4.  CONTROL STRUCTURE DESIGN

The purpose of control is to make the outputs α  and
θ  to follow the command rα  and rθ . The
specification given in terms of singular value can be
interpreted as follows:
 (1) Each control channel should be independent and
     no interaction is expected.
 (2) Each channel should have the same
     characteristics.
 (3) The auxiliary sensitivity function of each
    channel should show �40 dB/decade roll-off and at
   least �20dB at 100 rad/sec.

Usually the sensitivity function becomes larger when
the interaction exists between two channels. Thus the
minimization of sensitivity function makes the
interaction the minimum. The singular value
specification takes worse value between the two
channels, and naturally each channel should show the
same characteristics. In this situation, the two
singular values take the same value and they are
equal to the characteristics of each channel.

Thus the design process is divided into two phases,
namely the basic design phase, where each control
channel is designed, and the improvement phase,
where the minimization of interaction is sought. For
the basic design phase, coefficient diagram analysis
is made as follows:

The characteristic polynomial for the original plant
0 ( )P s  are composed of diagonal component 0 ( )dP s

and skew component ( )sP s .

   0 0( ) det( ( )) ( ) ( )p d sP s A s P s P s= = + ,             (15a)
   0 11 22( )d p pP s a a= ,                                          (15b)
   12 21( )s p pP s a a= − .                                         (15c)

The coefficient diagram is shown in Fig. 2. Because
of the large minus coefficient of 2s  of ( )sP s , the
corresponding coefficient of 0 ( )P s  is minus and the
open loop system is unstable. Now by proper
feedback control, 11pa  and 22pa  are converted to 11a
and 22a , such that



   11 15a s= + ,                  (16a)
   3 2

22 15 56.25 84.375a s s s= + + + .                 (16b)

Then the new diagonal component ( )dP s becomes
   11 22( )dP s a a= ,                   (17a)
     4 3 230 281.25 928.13 1265.6s s s s= + + + + ,
and the characteristic polynomial ( )P s  becomes
   ( ) ( ) ( )d sP s P s P s= + ,                                       (17b)
      4 3 229.912 269.5 928.32 1265.6s s s s= + + + + .

As is clear from Fig. 2, ( )P s  is almost equal to
( )dP s , and ( )P s  displays a good convex shape,

essential to good stability.

From the above observation, it is concluded that the
controller can be designed for each channel
independently, and the stability is automatically
satisfied. For this design the standard CDM SISO
design  can be used. Actually Eqs. (16a, b) are
derived from standard CDM approach.
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Fig. 2.  Coefficient diagram

5.  FEEDBACK CONTROL DESIGN

The plant equation is given in Eq. (13). It is repeated
here again.
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   11 1.9876pa s= + ,

   2
12 0.0075030 1.0029 0.00073219pa s s= − − + ,

   21 11.72 0.18730pa s= − + ,

   3 2
22 2.6542 0.29166 0.39591pa s s s= + + +

   12 0.17300pb = − ,
   21 31.604 0.67310pb s= − − .

For α  control, the controller can be PI control,
because 11a  is the first order. With the actuator
dynamics, the controller is shown as follows.

   2 *
2 1 0( ) ( )( )c rl s s k s kδ α α+ = + − ,                      (19)

   2 1/ 30l = .

Then the open-loop transfer function ( )G s becomes

   1 0
2

0.17300 ( )( )
( / 30 )( 1.9876)

k s kG s
s s s
− +

=
+ +

.                     (20)

The characteristic polynomial ( )P s  becomes

 2
1 0( ) ( / 30 )( 1.9876) 0.17300 ( )P s s s s k s k= + + − + .

                  (21)
Now the crossover frequency is chosen as 15 rad/sec,
one half of the actuator dynamics 30 rad/sec. By this
choice,

   1 15 /( 0.17300) 86.705k = − = − .                      (22a)

The stability index 1γ  is chosen as 4. The standard
choice is 2.5, but this value is increased with the
consideration of the effects of skew terms and of  the
sensitivity specification. Then 0k  is obtained as
follows:

 2
0 (15 1.9876) /[ 0.17300*4*(1 1.9876 / 30)]k = + − +

   391.11= − .                  (22b)

The coefficient diagram is shown in Fig. 3. In the
similar manner, θ  control is designed. The controller
takes the following form.

    * * 2 * * 2 * *
3 2 2 1 0( 1)( ) ( )( )e rl s l s s k s k s kδ θ θ+ + = + + − ,

    *
3 0.003l = ,   *

2 2 1/ 30l l= = .                            (23)

The value of *
3l  is more or less arbitrarily selected

for pseudo-differentiation. Then the open-loop
transfer function ( )G s becomes

   
* 2 * *
2 1 0( 31.604 0.67310) ( )( )

( )l

s k s k s kG s
A s

− − + +
= ,

   * * 2
3 2 22( ) ( 1)( )l pA s l s l s s a= + + ,                    (24)

       6 5 40.0001 0.036599 1.0965s s s= + +
3 22.6648 0.30604 0.39591s s s+ + + .

The characteristic polynomial ( )P s  becomes

   ( ) ( )lP s A s=                                                     (25)
       * 2 * *

2 1 0( 31.604 0.67310 )( )s k s k s k+ − − + + .

By the similar choice of the crossover frequency,

   *
2 15 /( 31.604) 0.47462k = − = − .                   (26a)

The rest of parameters are obtained, by specifying
the stability index, 3 4γ =  and 2 2.5γ = . The 1γ
can not be specified, because of the small zero of the
plant.

    *
1 2.2315k = − ,   *

0 3.5669k = −                  (26b)

The coefficient diagram is shown in Fig. 4. Due to
the small zero in the plant, the coefficient of the 0-th
order can not be designed and has to be accepted as it



is. Finally the total controller is expressed as follows
by Eq. (14):

   1( ) [ ; ] ( )[ ; ]c e c c r rA s E u u B s α α θ θ− = − − ,     (27)
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The controller is a 3-rd order controller consisting of
one PI and one PID controller.

0k
1k

1l

2l

0123
10

-2

10
-1

10
0

10
1

10
2

Order i

C
oe
ff
ic
ie
nt
s

 

( )lA s

*
2k

*
1k

*
0k

0123456
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Order i

C
oe
ff
ic
ie
nt
s

Fig. 3. α  control         Fig. 4. θ  control

6.  SIMULATION

Simulation is performed with the designed controller
Eq. (27) and the exact fighter model Eq. (9). Two
cases are shown. The first case, Fig. 5, is for rα  step
command, and the second case, Fig. 6, is for rθ  step
command. In both cases, the outputs follow the
reference commands, but in rθ  step case, the cross
coupling effect is larger and α  is appreciably
affected. This suggests the interaction problem is still
to be solved.
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Fig. 5.  rα  step command response

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

3
x 10-3

al
p
ha
, 
al
ph
ar
 [
ra
d]

0 0.2 0.4 0.6 0.8 1
-1

0

1

2

3

4

5
x 10-3

th
et
a,
 t
he
ta
r 
[r
ad
];
 0
.1
*q
 [
ra
d/
se
c
]

tim e[sec]

0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

ue
s,
 u
c
s 
[r
ad
]

0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

el
e
vo
n
 a
nd
 c
a
na
rd
 [
ra
d]

tim e[sec]

Fig. 6.  rθ  step command response

7.  COMPARISON WITH H-INF CONTROLLER

In order to make comparison with the H-inf
controller, the sensitivity function S(s) and auxiliary
sensitivity function T(s) for this controller is shown
in Fig. 7. The definitions are as follows:
    [ ; ] ( )[ ; ]r rT sα θ α θ= ,          (28)
    [ ; ] ( )[ ; ]r r r rS sα α θ θ α θ− − = ,
    11 12 21 22( ) [ ; ]T s T T T T= ,
    11 12 21 22( ) [ ; ]S s S S S S= .
Naturally, the following relations hold.
    11 11 22 22 1T S T S+ = + = ,
    12 12 21 21 0T S T S+ = + = .                    (29)
The singular value plots are shown in Fig. 8. They
correspond to the worst case of Fig. 7. The svT1,
larger singular value of ( )T s , is greatly affected by
the interaction term, 12T . The svS1, the larger value
of ( )S s , is greatly affected by 12 12S T= − , and
slightly affected by 21 21S T= −  at the low frequency
range. Thus if 12T  and 21T  are made small by some
effective interaction minimization control, The
singular value plot will become more favorable.

The achieved gamma value for the 8-th order H-inf
controller in the Robust Control Toolbox is 16.8. The
corresponding gamma value for this CDM 3-rd order
controller is about 7 as read from Fig. 7. When
proper interaction suppression is achieved, this
gamma value will go up to about 14 with a large
margin left to the robustness specification for ( )T s
at 100 rad/sec. From this observation and the
reported sigma plot, the 8-th order H-inf controller
has good interaction suppression characteristics.

Even if the optimization is ideally made, the gamma
value may not be able to go up beyond 22.361
( 0.510*5= ), as easily guessed by a crude Bode
diagram analysis supported by CDM. The key issue
is to find a good interaction suppression control law.
If such control law is found, gamma value may go up



close to 22.361. Whether such control does exist or
not is an open question to be left for future studies.
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Fig. 7.  Sensitivity and auxiliary sensitivity function
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Fig. 8.  Singular value plot

8.  CONCLUSION

The major results of this paper are as follows:
(1) A simple controller is designed for the

longitudinal control of a modern fighter with
elevon and canard.

(2) The designed controller is a 3rd order controller
composed of one PI and one PID. It achieves
about a half of gamma achieved by the 8-th order
controller designed by H-inf.

(3) In order for CDM to reach to the maturity in
MIMO design, the suppression of the interaction
is essential. The future studies in theory and
algorithm in this respect are keenly needed.

(4) The future development of effective CAD for
MIMO CDM is keenly needed. The present CDM
CAD (MSS, 2000) is very useful for many CDM
design problems, but lacks in flexibility for use in
MIMO design.
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