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Abstract: Previous studies have shown that a controllable linear system can be driven
from a given initial condition to a desired target by means of a polynomial input
function whose coefficients are obtained simply by solving a set of linear algebraic
equations. This paper shows how the application of the concept of polynomial
controllability is useful for solving a suboptimal control problem. In particular we
present a simple procedure for searching for a control function that minimizes a
quadratic performance measure while the system is transferring between specified
end-points. The approach is implemented for both state-space and singular linear
time-invariant controllable systems. Copyright c© 2002 IFAC
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1. INTRODUCTION

In linear system theory it is known that the rich
structure of a controllable system allows one not
only to transfer the system from its current posi-
tion to an arbitrarily selected final target, but also
to move the system along a pre-determined path
that connects the initial and the final state vectors
and satisfies certain conditions. In this regard a
sequence of papers have shown that a control-
lable linear system is also polynomial controllable
(Ailon et al., 1986, Ailon and Langholz, 1986, and
Aeyels, 1987).

The implication of this result is that a polynomial
input ensures the transfer of the system along
a polynomial trajectory and the control function
can be computed by solving a set of linear al-
gebraic equations (rather than by the controlla-
bility Grammian), the solution of which yields
the polynomial coefficients of the desired input.
In (Ailon et al., 1986) a bound on the degree of
the polynomial input that generates a polynomial
trajectory has been proposed. Later (Ailon and

Langholz, 1986) improved that result by reducing
the bound on the input polynomial degree. Fi-
nally, in (Aeyels, 1987) the bound on the degree
of the required polynomial input that ensures the
transfer of the system along a polynomial trajec-
tory has been lowered to its minimal value.

Those results motivate the present study in which
we consider the application of the concept of
polynomial controllability to an optimal control
problem. We present an approach for steering
a linear controllable system from a given initial
state to a desired target by means of a polynomial
input, while a quadratic performance index is to
be minimized. Using the present approach the so-
lution to the optimal control problem is obtained
by determining a point in an Euclidean space
that minimizes a specific function, rather than
finding a function that minimizes a predetermined
functional. Furthermore, the solution is attained
simply by solving a set of algebraic equations that
determines the required vector of the polynomial
coefficients.
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A direct extension of the approach for solving the
tracking problem while the control objective is to
maintain the system state as closely as possible
to a desired reference trajectory connecting the
initial and final target, is demonstrated. Finally,
application of the method to the associated opti-
mal control problems while a linear controllable
singular system is under consideration (Lewis,
1986), has been presented as well.

2. PRELIMINARIES

Consider the linear time-invariant state-space sys-
tem

ẋ (t) = Ax (t) + Bu (t) ; t ≥ 0, (1)

with x ∈ <n and u ∈ <m. The initial condition is
x (0) = x0. Define r

.= n − m. We assume that
rankB = n − r, (i.e., B is a full column rank
matrix,) and (A,B) is a controllable pair. Clearly
r < n. We assume that 0 < r < n. (If r = 0 then
B is square and invertible and the results that
will be established for 0 < r < n can be extended
trivially for this case.) Let the matrix C ∈ <r×n

be a surjective maximum left annihilator of B, i.e.,

CB = 0;

ξT B = 0 ⇔ ∃η ∈ <r : ξT = ηT C, (2)

where [·]T is the transpose of [·].
As indicated above, if the problem under consid-
eration is restricted to the derivation of a poly-
nomial control function that drives the system
from a given initial state to a desired target
along a polynomial trajectory, the integer that
determines the polynomial’s degree in (Aeyels,
1987) is lower than the one presented in (Ailon
and Langholz, 1986). However, here the control
objective is more general and we turn to study
the application of new tools for minimizing some
performance criterions having constraints. In this
regard the minimal degree of the polynomial pair
{x, u} that yields a suboptimal solution is not of
prime interest, and it will be more convenience to
apply below the various patterns and indices that
have been established in the latter reference.

Define an integer M ≥ 2r+1 and an (M+1)r×Mn
constant matrix WM as follows

WM =




C 0 0 · · · 0 0
−CA 2C 0 · · · 0 0
0 −CA 3C · · · 0 0
...

...
...

...
...

...
0 0 0 · · · −CA MC
0 0 0 · · · 0 −CA




(3)

where In is the n × n identity matrix. Using (3)
consider the [(M + 1)r + n]×Mn matrix

HM (t) =
[

WM

tIn t2In · · · tMIn

]
. (4)

The following results (Ailon and Langholz, 1986)
play an essential role in this study.

Lemma 2.1. Controllability of the system (1) im-
plies that for each fixed t > 0 the matrix HM (t) is
of full rank for any fixed M satisfying M ≥ 2r+1.

Theorem 2.1. Consider the controllable system (1)
and let u(t) be a control function with

u(t) = [p1 (t) , · · · , pm (t)]T , t ≥ 0 (5)

where pi(t) are polynomials. Let x0 and xf be
some arbitrary initial and final states respectively.
Then, for any selected tf > 0 a polynomial
command u(t) of the form (5) with degree not
larger than M where M ≥ 2r+1, can be computed
such that the solution x(·) of the system (1) is a
polynomial trajectory of degree M with x(0) = x0

and x(tf ) = xf .

Furthermore, from (Ailon and Langholz, 1986)
the procedure to determine a polynomial pair
{x(·), u(·)} that satisfies the differential equation
(1) and the end-point conditions is obtained as
follows.

Let

x (t) = x0 +
M∑

i=1

dit
i, t ≥ 0, (6)

where for each i, di = [d1i, d2i, · · · dni]T ∈ <n is a
constant vector. The vector d = [dT

1 , dT
2 , · · · , dT

M ]T ∈
<Mn of the unknown coefficients in (6) is obtained
by solving the algebraic equation

HM (tf ) d =




CAx0

0
...
0
xf − x0




, (7)

where the [(M +1)r+n]×Mn dimensional matrix
HM (t) is of full rank for any fixed t > 0.

The polynomial vector-valued function u(·) is ob-
tained from

ẋ (t)−Ax (t) = Bu (t) , (8)

where x (·) is determined by (6) and (7). Since the
coefficients vector d solves (7), x(t) in (6) satisfies
(Ailon and Langholz, 1986)

C [ẋ (t)−Ax (t)] = 0; t ≥ 0. (9)

Hence, from (2) for any fixed positive t, ẋ (t) −
Ax (t) belongs to the column space of B and (8)



determines uniquely u (t). Furthermore, since the
columns of B are linearly independent, (8) yields

u(t) = B+ [ẋ(t)−Ax(t)] , (10)

where B+ .= (BT B)−1BT is the (Moore-Penrose)
pseudo-inverse of B.

Remark 2.1. Let α
.= n − r. Clearly (recall that

0 < r < n), α ≥ 1. Then

Mn− [(M + 1)r + n] = M(r + α)−
[(M + 1)r + r + α] = Mα− 2r − α.

Hence, if α = 1 and M = 2r+1 the matrix HM (t)
in (4) is square (Mn×Mn). Since in the general
case α ≥ 1 and the integer M will be selected such
that M > 2r + 1, for each fixed t > 0 we have
from Lemma 2.1 rank[HM (t)] = (M +1)r +n (=
number of rows< number of columns). For further
applications note that the difference between the
numbers of columns and rows in HM increases
with M .

3. MAIN RESULTS

Based on the results presented in the previous
section we wish to consider further applications of
the tools resulting from the concept of the poly-
nomial controllability. Here the control objective
is to accomplish the transfer of the system from a
given state to a desired target while some selected
performance criterions are taken into account.

Thus, define n × n real constant matrices Q =
QT ≥ 0 and R = RT > 0. The design objective is
to determine a control function u (·) that transfers
the system (1) from x(0) = x0 to x(tf ) = xf

where xf and tf are specified final state and time,
such that the performance measure

J =
1
2

tf∫

0

[
xT (t)Qx (t) + uT (t)Ru (t)

]
dt,(11)

is minimized. The performance index (11) is stan-
dard in the framework of optimal control (Kirk,
1970; Lewis, 1986). In particular if xf = 0, the
functional J is associated with the linear regulator
control problem. Later on the criterion (11) will
be modified to allow greater generality.

Before we present the main results of this study,
some considerations are in order concerning the
nature of J in (11) while the integrand depends
on a pair of polynomial functions x and u.

Since the right-hand side of (11) depends on x0,
d, and tf , we write J = J(x0, d, tf ). Assume
momentarily that x0 = 0 and consider J(0, d, tf ).
Since the integrand in (11) contains quadratic

forms, for any fixed tf > 0 the performance index
J(0, tf , d) is a quadratic form of the (coefficients)
vector d = [δi, · · · , δMn]T . That is, we can write
J(0, d, tf ) as follows:

J(0, d, tf ) =
1
2

∑

i,j

fij(tf )δiδj

=
1
2
(f11(tf )δ2

1 + · · ·+ fMn,Mn(tf )δ2
Mn

+ 2
∑

i<j

fij(tf )δiδj). (12)

The above expression in the variables δi is a
quadratic polynomial corresponding to the rep-
resentation (for simplicity we omit the finite time
tf below):

J(0, d, tf ) =
1
2
dT




f11 f12 · · · f1,Mn

f21 f22 · · · f2,Mn

· · · · · · · · · · · ·
fMn,1 fMn,2 · · · fMn,Mn


 d

.=
1
2
dT Fd. (13)

It is clear that for each tf > 0, F ≥ 0. We will
show that F > 0. If Q > 0 then any d 6= 0 implies
in (6) x(t) 6= 0, and hence J(0, d, tf ) 6= 0. Assume
that Q is positive semi-definite and for some d 6= 0
the resulting x(t) 6= 0 satisfies xT (t)Qx(t) = 0 for
all t ∈ [0, tf ]. If J(0, d, tf ) = 1

2dT Fd = 0 we must
have (since by definition R > 0) u(t) = 0 for all
t ∈ [0, tf ]. But observing (10) and (2) this implies
that ẋ(t)− Ax(t) belongs to the column space of
CT , which contradicts (9).

Using previous observations we conclude that if
we remove the restriction x0 = 0, we have

J (x0, d, tf ) =
1
2

(
xT

0 Qx0

)
tf +

1
2
g (x0, d, tf ) +

1
2
dT Fd, (14)

where g(x0, d, tf ) depends linearly on d, and F =
FT > 0.

Remark 3.1. The coefficients vector d yields a
polynomial vector-valued function x(·) by means
of (6), which in its turn determines u(·) in (10).
Hence, d ∈ <Mn uniquely defines a polynomial
pair {x(·), u(·)}. Moreover, equation (7) for the
unknown vector d is a necessary and sufficient
condition that the pair {x(·), u(·)} satisfies the
state equation (1) together with the end-point
conditions x(0) = x0 and x∗(tf ) = xf . Therefore
in the framework of this study we shall seek a
vector d∗ that minimizes J(x0, d, tf ), subject to
the constraint (7).

Theorem 3.1. Fix an integer M > 2r + 1 and
a constant tf > 0, and select arbitrarily initial



and final states x0 and xf respectively. Then there
exists a unique d∗ such

J (x0, d
∗, tf ) < J (x0, d, tf ) (15)

for any d 6= d∗, subject to the constraint (7).

Proof. We show first that there exists a point d∗

which is a strict local minimum of J(x0, d, tf ) sub-
ject to the constraint (7). Observing the constraint
equation it appears that any d that satisfies (7) is
a regular point. This conclusion follows from the
fact that HM (tf ) is surjective and hence, if hi(d)
is the i−th row of HM (tf ) multiplied by d the gra-
dient vectors ∇h1(d), ∇h2(d), ..., ∇h(M+1)r+n(d),
are linearly independent.

Observing (7) and (14), the first-order necessary
condition for the constrained optimal problem,
together with the constraint equation, are found
to be

∇J(x0, d, tf ) + λT∇HM (d) = 0

HM (tf ) d− c = 0, (16)

where λ ∈ <(M+1)r+n is some constant vec-
tor, λT∇HM is the gradient of λT HM , and c ∈
<(M+1)r+n is a constant vector representing the
right hand-side of (7). Note that (we use the no-
tations of (Luenberger, 1989)) λ is the Lagrangian
associated with constrained problem, and

∇W (z) =
[
∂wi (z)

∂zj

]
,

where wi is the i− th row of W .

Next we claim that there exists a unique vector d
that satisfies (16). Recalling (7) and (14) we can
re-write (16) as follows

[
F HT

M

HM 0

] [
d
λ

]
=

[
b
c

]
, (17)

where (recall that g(·, ·, ·) depends linearly on d)
2b = −∂g(x0, d, tf )/∂d is independent of d.

To assert the claim we must show that the matrix
on the left-hand side of (17) is nonsingular. To
this end we recall that HM (tf ) is surjective and
that there exists a square nonsingular matrix L ∈
<Mn×Mn such that

HML =
[
H# 0

]
(18)

where H#(tf ) ∈ <((M+1)r+n)×((M+1)r+n) is non-
singular for any fixed tf > 0. Define

Q
.=

[
L 0
0 I(M+1)r+n

]
. (19)

We have

QT

[
F HT

M

HM 0

]
Q =

[
LT FL LT HT

M

HML 0

]
. (20)

Partitioning the symmetric matrix LT FL
.= Φ

into four blocks and applying (18) we have from
(20)

[
LT FL LT HT

M

HML 0

]
=




Φ11 ΦT
12 HT

#

Φ12 Φ22 0
H# 0 0


 . (21)

Since the matrices Φ and F are congruent and
F = FT is positive definite, so is Φ. Therefore the
symmetric matrix Φ22 is positive definite.

Recalling that H# is a square nonsingular matrix
and applying a sequence of elementary operations
it appears that the matrix in (21) is singular if
and only if Φ22 is singular, which contradicts the
positive definiteness of Φ, and hence of F . This
asserts our claim and we assign the unique vector
d that solves (16) by d∗. Therefore the first-order
necessary condition for d∗ to be a local minimum
point subject to the equality constraints has been
established.

Recalling that the Hessian of J(x0, d, tf ) is
F = FT > 0 and the Hessian of the function
λT (HM (tf )d− c) (associated with the constraint)
is zero, the second-order sufficient condition for
the constrained problem is satisfied. Since the nec-
essary and the sufficient conditions are fulfilled,
d∗ is a strict local minimum of J subject to the
constraint HM (tf )d − c = 0 (Luenberger, 1989,
Chap. 10).

Next, we shall show that d∗ is a strict global mini-
mum point of J . Clearly (16), or equivalently (17),
gives a total of Mn + [(M + 1)r + n] equations in
the Mn+[(M+1)r+n] variables comprising d and
λ. Since HM (tf )d − c = 0 and HM is surjective,
(M + 1)r + n components of d depend linearly on
the other Mn− [(M +1)r+n] components. (As il-
lustrated in Remark 2.1 for M > 2r+1 the integer
Mn − [(M + 1)r + n] is strictly positive.) In this
way we may represent the performance index J
by J̄(x0, d̄, tf ) where d̄ ∈ <Mn−[(M+1)r+n]. Since
d̄∗ minimizes J̄ where d∗ minimizes J subject to
the constraint HM (tf )d− c = 0 and vice versa, if
we show that the Hessian of J̄ , denoted by F̄ is
positive definite, we complete the proof. But this
is obvious because by evaluating the functional J̄
we obtain a function of d̄ which is similar to the
right-hand side of (14); that is, as far as the vector
d̄ is concerned it contains terms of three types:
those which are independent of d̄, terms which
depend linearly on d̄, and a quadratic polynomial
corresponding to the representation 1

2 d̄T F̄ d̄. ♦♦
To further generalize the results obtained thus
far we consider a tracking control problem as
follows. Suppose that the system motion between
a given initial position x0 and a desired final target
x(tf ) = xf should follow as closely as possible
a predetermined trajectory σ(·) connecting the



two points. In the present case the performance
measure to be minimized is

J =
1
2

tf∫

0

([x(t)− σ(t)]T Q[x(t)− σ(t)]

+ uT (t)Ru(t))dt, (22)

where σ : [0, tf ] → <n is uniformly continuous.
In view of the approach of this study we are
looking for a polynomial input that allows us
to present a suboptimal solution to the present
control problem.

Let ||σ||L∞ = supt∈[0,tf ] ||σ(t)||, where || · || is the
Euclidean norm. In view of Weierstrass’s Theo-
rem (Lang, 1968, Chap. XI) σ can be uniformly
approximated by polynomials on [0, tf ]. Hence, fix
an ε > 0 sufficiently small and take an integer
M > 2r + 1 such that the polynomial

s(t) = s0 +
M∑

i=1

ait
i (23)

with ai ∈ <n satisfies

‖s (t)− σ (t)‖L∞ ≤ ε; ∀t ∈ [0, tf ] . (24)

Using (23)-(24) we modify the performance index
J in (22) as follows

==
1
2

tf∫

0

([x(t)− s(t)]T Q[x(t)− s(t)]

+ uT (t)Ru(t))dt. (25)

In the framework of the paper approach it is
required now to find a polynomial pair {x, u}
(of degree M) that minimizes = subject to the
constraint (7).

Evaluating the functional (25) we have (similarly
to (14)) that = contains three types of term: those
which depend exclusively on x0 and ai (see (23)),
and are independent of d; terms which depend
linearly on d, and the quadratic term 1

2dT Fd
which is independent of x0 and ai. From here the
suboptimal solution follows from Theorem 3.1 and
its constructive proof.

4. APPLICATIONS TO SINGULAR SYSTEMS

In this section we apply the tools developed in
the previous section to a linear singular system
model. Some preliminary observations concerning
the model of singular systems, are to be repre-
sented first.

We consider the model

Eẋ (t) = Ax (t) + Bu (t) , (26)

where E ∈ <n×n is a singular matrix. It is
assumed that (26) is solvable, i.e., det(sE −A) 6=
0 for almost all s. The singular system is c-
controllable if any state is reachable from any
initial state. (We consider only the concept of
c-controllable singular systems. The type of r-
controllable singular systems, will not be treated
here.) The system (26) is c-controllable if and only
if (Yip and Sincovec, 1981) for any finite s the
augmented matrices

[sE −A] ; [E B] (27)

are of full rank.

Note that if the system is c-controllable and C
satisfies (2), then the matrix CE is surjective. In
fact if this is not the case, there is a nonzero vector
η ∈ <r such that ηT CE = 0 and ηT C 6= 0 which
means that ηT C [E B] = 0, i.e., the system is
not c-controllable.

Take M ≥ 2r + 1 and define an (M + 1)r ×Mn
constant matrix W̃M as follows

W̃M =




C̃ 0 0 · · · 0 0
−CA 2C̃ 0 · · · 0 0
0 −CA 3C̃ · · · 0 0
...

...
...

...
...

...
0 0 0 · · · −CA MC̃
0 0 0 · · · 0 −CA




(28)

where C̃
.= CE, and consider the matrix

H̃M (t) =
[

W̃M

tIn t2In · · · tMIn

]
. (29)

We have the following results (Ailon and Berman,
1989).

Lemma 4.1. C-controllability of the system (26)
implies that for each fixed t > 0 the matrix H̃M (t)
is of full rank for any fixed M satisfying M ≥ 2r+
1.

Theorem 4.1. Consider the c-controllable system
(26) and let u(t) be a control function with

u(t) = [p1 (t) , · · · , pm (t)]T , t ≥ 0 (30)

where pi(t) are polynomials. Let x0 and xf be
some arbitrary initial and final states respectively.
Then, for any selected tf > 0 a polynomial
command u(t) of the form (30) with degree not
larger than M where M ≥ 2r+1, can be computed
such that the solution x(·) of the system (26) is a
polynomial trajectory of degree M with x(0) = x0

and x(tf ) = xf .

Using Lemma 4.1 and Theorem 4.1 we proceed
as follows. Let x(·) be given by (6). Replace HM

in (7) with H̃M in (29), and let equation (10) be
replaced by



u(t) = B+ [Eẋ(t)−Ax(t)] , (31)

where B+ .= (BT B)−1BT is the pseudo-inverse
of B. Then, whether the performance measure
(11) or (22) is under consideration, the procedures
established in Section 3 for obtaining suboptimal
solutions to the constrained minimization prob-
lem for controllable regular state-space systems,
can be applied straightforwardly to c-controllable
singular systems.

5. CONCLUDING REMARKS

The paper presents a simple procedure for ob-
taining a suboptimal solution to a constrained
minimization of a quadratic performance index for
time-invariant linear controllable systems. While
the standard solution to the problem requires the
application of calculus of variations associated
with minimizing a quadratic functional subject to
boundary conditions and differential equations as
constraints, the proposed approach exhibits a sub-
optimal solution which is achieved by minimizing
a function of several unknowns, subject to a set
of linearly independent equations. The approach is
based on the concept of polynomial controllability.
By increasing the polynomial’s degree, the result-
ing suboptimal solution becomes more accurate
with respect to the optimal solution. Applications
of the approach to singular systems have been
considered.

As in many other solution methods established
for the constrained optimal control problem (Kirk,
1970, Chap.6; Lewis, 1986, Chap. 3), the proposed
technique determines an open-loop suboptimal
control, that is, a specification of the optimal
control as a function of time and the boundary
conditions, not of the current state.

In this paper no constraints have been imposed on
the system input. However in real situations there
are constraints on the control signals and the state
variables. Under this condition the sub-optimal
control problem under consideration is associated
with the evaluation of an admissible input func-
tion which satisfies the control constraints and
generates an admissible state trajectory (that sat-
isfies equation (7)) and mimimizes a performance
index J . Further developments and research in
this direction is currently conduced. In this regard
we indicate here the paper of Sussmann, 1987,
where the concept of a polynomial map has been
studied in connection with the problem of small-
time local controllability of the optimal time func-
tion.
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