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Abstract:  Direction-dependent dynamic systems are defined, and Wiener models for them 
are described.  For first-order systems with pseudo-random binary inputs, optimising the 
model parameters by cross-correlation function matching methods based on analysis gives 
excellent results.  For first-order systems with inverse-repeat pseudo-random binary inputs, 
optimisation by discrete Fourier transform matching and output matching methods also 
give excellent results.  These optimisation methods may be extended to direction-
dependent dynamic systems that cannot be analysed, as illustrated by a first-order system 
with a pseudo-random ternary input, and a second-order system with an inverse-repeat 
pseudo-random binary input.          Copyright © 2002 IFAC 
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1.  INTRODUCTION 
 

In direction-dependent dynamic systems, the system 
dynamics when the system output is increasing are 
different from those when the output is decreasing.  
Such systems are not readily amenable to analysis, 
and theoretical solutions are known only for cases in 
which the system dynamics in each direction are first-
order linear and the system inputs are binary.  The 
paucity of analytical results for these systems 
contrasts sharply with their abundance in industry, 
where examples include steam-raising plants 
(Godfrey and Briggs, 1972), gas turbines, chemical 
processes and nuclear reactors (Godfrey and Moore, 
1974), distillation columns (Turner et al., 1996), and 
automotive suspensions and tyres (Tan and Godfrey, 
2001). 
 
In the absence of methods for dealing with these 
systems analytically, interest turns naturally to 
modelling them in forms known to be suitable for 
analysis.  For nonlinear systems of this kind, models 
based on the Volterra functional series (Volterra, 
1930) have traditionally been deemed suitable.  This 
series is known to converge for block-oriented 
models, where the blocks represent subsystems that 
either have linear dynamics or are static nonlinearities 
(Brilliant, 1958), and models of this kind are therefore 
used here.  From among the many different kinds 
available, the Wiener model in which dynamic linear 
subsystems precede static power law nonlinearities is 

chosen because it is particularly suitable for use with 
binary inputs (Barker et al., 2000a), and these are the 
only inputs for which analytical results are available 
for the outputs and cross-correlation functions of first-
order direction-dependent systems (Tan and Godfrey, 
2001). 
 
The approach adopted here is to commence with the 
most general form of a direction-dependent system 
capable of being analysed, which is a first-order 
system in which the values of both the gain and the 
time constant are direction-dependent.  A Wiener 
model is then developed for the system, using 
analytical results obtained when both the system and 
the model have a pseudo-random binary input.  The 
most effective modelling methods are then applied to 
examples of direction-dependent systems for which 
no theoretical methods are available.  These are a 
first-order system with a pseudo-random ternary 
input, and a second-order system with an inverse-
repeat pseudo-random binary input. 

 
 

2.  DIRECTION-DEPENDENT SYSTEMS 
 
Recent work by Tan and Godfrey (2001) has led to 
new and important results for direction-dependent 
systems.  In particular, analytical expressions have 
been obtained for the outputs and cross-correlation 
functions of first-order systems with direction-
dependent gains and time constants when the inputs 

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



are either maximum-length pseudo-random binary 
signals or inverse-repeat pseudo-random binary 
signals.  Here the transfer functions are taken to be 
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 when the direction of the system output y(t) 

is positive, and 
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 when it is negative.  A 

system for which 4=K , , 1D =K TT 3U = , 
 and TT 12D = 1=T  is used for illustration in this 

paper. 
 
The system input u(t) is taken to be either a 
maximum-length pseudo-random binary signal with 
period NT generated using a constant clock-pulse 
interval of T from a maximum-length binary sequence 
s(i) with period N and characteristic polynomial f(D), 
or the inverse-repeat maximum length pseudo-random 
binary signal with period 2NT derived from it by 
inverting alternate values.  In both cases, the zero 
elements of s(i) are converted to –1 and the unity 
elements of s(i) are converted to +1.  A pseudo-
random binary signal for which N = 127 and 

 is used for 
illustration in this paper. 
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Of particular importance is the discrete periodic cross-
correlation function )(iTuyφ  between the system 
input u(t) and the steady-state system output y(t), 
given by 
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The cross-correlation function is the sum of an infinite 
number of components, for which the analytical 
expressions involve four parameters and an impulse 
response function: 
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The significant components of the system cross-
correlation function are as follows. 
 
Constant component 
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This component is simply a bias. 
 
Linear component 
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This component, which is the most significant, is the 

impulse response  scaled by )(C iTw
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Quadratic component 

       ∑
−

=

− −
+

−=
1

1
C

1
2 ))((1)(

N

r
r

r
uy Tiiwab

N
NiTφ       (4) 

where  is defined through  and is 

determined by dividing the polynomial 1  by 
the characteristic polynomial  until the single-

term remainder  is obtained.  This component is 
the sum of scaled and shifted replicas of the impulse 
response, with the more significant replicas obtained 
when 
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Cubic component 
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where  is defined through 

 and is determined by 

dividing the polynomial 1  by the 
characteristic polynomial  until the single-term 

remainder  is obtained.  This component is also 
the sum of scaled and shifted replicas of the linear 
impulse response. For the characteristic polynomial 
used here, the more significant replicas are at shifts 
i1,1 = 59, i1,2 = 85, i2,1 = 113, i1,3 = 107, i2,2 = 118, and 
i3,1 = 95. 
 
If the system input is the inverse-repeat maximum-
length pseudo-random binary signal, then the odd-
order components in the new cross-correlation 
function are identical to those above and the even-
order components are zero, except for a very small 
zero-order term that is an oscillatory bias (Tan and 
Godfrey, 2001). 
 
 

3.  WIENER MODEL 
 
The Wiener model of the system is shown in Fig. 1.  
As the highest-order component of any significance in 
the system cross-correlation function is cubic, the 
model paths are restricted to those of order 0 to 3.  
The discrete periodic cross-correlation function 

)(iTuvφ  between the model input u(t) and the steady-
state model output v(t) is the sum of four components. 
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Fig. 1. Wiener model of first-order direction-
dependent system 

 
The analytical expression for the component 
corresponding to the j-th order path involves one 
parameter and two impulse response functions 
(Barker and Obidegwu, 1973): 
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The components of the model cross-correlation 
function are as follows. 
 
Constant component 
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This component is simply a bias.  
 
Linear component 
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This component is the impulse response  

scaled by 
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Quadratic component 
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where ri  is the same as in Section 2.  This 
component is the sum of scaled and shifted replicas of 
the impulse response , with a bias. )(2 iTw′
 
 
 

Cubic component 
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where  is the same as in Section 2.  This 
component is the sum of scaled and shifted replicas of 
the impulse response ′ , together with a scaled 
replica of the impulse response  and a bias. )(3 iTw
 
If the system input is the inverse-repeat maximum-
length pseudo-random binary signal, then the odd-
order components in the new cross-correlation 
function are identical to those above with the biases 
removed and the even-order components are zero, 
except for a very small zero-order term that is an 
oscillatory bias (Barker and Obidegwu, 1973). 

 
 

4.  MODEL OPTIMISATION WITH PSEUDO-
RANDOM BINARY INPUTS 

 
The Wiener model that best represents the direction-
dependent system is obtained when its parameters are 
set to their optimal values.  As the system and model 
cross-correlation functions have similar components, 
the cross-correlation component (CCC) matching 
method may be used (Barker et al., 2000b; Barker et 
al., 2001). 
 
The constant components are simply chosen to equate 
the biases.  The linear components are the most 
significant, and these are matched when  and C1 KK =

C1 TT = .  The quadratic components are the next most 
significant, and the most consistent methods for 
matching them involves minimising the sum of either 
the squares or the moduli of the differences between 
them.  These both give similar results, so that only the 
former will be used here. For this, the MATLAB 
Optimization Toolbox (Coleman et al., 1999) can be 
used to obtain the optimal values of  and a  that 
give 
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The cubic components, which are the least significant, 
can be matched in the same way, by obtaining the 
optimal values of  and  that give 3K 3a
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Fig. 2. Cross-correlation functions of first-order 

direction-dependent system (o) and Wiener model 
(+) with pseudo-random binary input 

 
This method represents the limit of the analytical 
approach, but the results obtained are excellent.  
Fig. 2 shows the cross-correlation functions of the 
system.  The correspondence between the linear 
components is striking, as is that between the 
quadratic components in which the more significant 
replicas at shifts of 89T, 51T, 21T, 102T, etc., are 
easily seen.  The cubic components are less obvious. 
 
The optimal model parameters obtained by this 
method are given in Table 1. 

 
Table 1 Optimal parameters for Wiener model of first-

order direction-dependent system with pseudo-
random binary input 

 
Model Parameters Matching 

Method K0 K1 T1 K2 T2 K3 T3

CCC 2.31 1.72 4.99 1.00 7.03 0.84 9.04
CCF 2.40 1.59 4.76 1.00 6.90 0.94 8.92
OUT 2.97 1.60 4.78 0.94 6.44 0.82 7.96

 
In contrast to the completely analytical approach 
above, two partly analytical methods may also be 
used to obtain the optimal model parameters.  Both 
methods use the results obtained by Tan and Godfrey 
(2001) to compute the system output values at the 
clock-pulse epochs.  For a given set of model 
parameters, each of the model path output values at 
the same epochs is also computed and summed to 
obtain the model output values. 
 
In the cross-correlation function (CCF) matching 
method the cross-correlation functions of the system 
and the model are computed and matched using the 
MATLAB Optimization Toolbox to obtain the optimal 
values of , , T , , T ,  and T  that give 0K 1K 1 2K 2 3K 3
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As seen from Table 1, the optimal values obtained by 
this method are similar to those obtained by the 
component matching method. 
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Fig. 3. Outputs of first-order direction-dependent 

system (o) and Wiener model (+) with pseudo-
random binary input 

 
In the output (OUT) matching method, the system and 
model output values are matched by obtaining the 
optimal values of , , , , ,  and T  
that give 

0K 1K 1T 2K 2T 3K 3
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Fig. 3 shows the very close match between the system 
and model outputs obtained by this method.  As seen 
from Table 1, the optimal values obtained are similar 
to those obtained by the cross-correlation function 
methods. 

 
 

5.  MODEL OPTIMISATION WITH INVERSE-
REPEAT PSEUDO-RANDOM BINARY INPUTS 

 
If the input is now taken to be the inverse-repeat 
maximum-length pseudo-random binary signal with 
period 2NT, then matching the odd-order components 
of the system and model cross-correlation functions 
by the methods in Section 4 gives optimal values for 

, ,  and T  similar to those in Table 1.  
However, the even-order components are zero except 
for the very small zero-order term, so no meaningful 
information is available for the optimal values of K

1K 1T 3K

2

3

0, 
K2, and T .  Fortunately, the use of an inverse-repeat 
input confers properties on the output that can be 
exploited to give two improved matching methods. 
 
The system and model outputs may be separated into 
odd and even components by subtracting or adding 
members separated by a half-period.  In the output 
(OUT) matching method, the odd components of the 
system and model outputs are matched to obtain the 
optimal values of , ,  and T  that give 1K 1T 3K 3
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and the even components are matched to obtain the 
optimal values of ,  and T  that give 0K 2K 2
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Fig. 4.  Outputs of first-order direction-dependent 

system (o) and Wiener model (+) with inverse-
repeat pseudo-random binary input 

 
Fig. 4 shows the very close match between the system 
and model outputs that is obtained by this method.  As 
seen from Tables 1 and 2, the optimal parameter 
values obtained are similar to those obtained with a 
pseudo-random binary input. 

 
Table 2 Optimal parameters for Wiener model of first-
order direction-dependent system with inverse-repeat 

pseudo-random binary input 
 

Model parameters Matching 
method K0 K1 T1 K2 T2 K3 T3

CCF - 1.64 4.90 - - 0.81 8.91
OUT 2.97 1.64 4.88 1.01 7.22 0.81 8.90
DFT 2.97 1.64 4.87 1.01 7.22 0.84 9.60

 
Odd and even harmonics in the system output are 
attributable to the odd-order and even-order 
nonlinearities of the system respectively.  In the 
discrete Fourier transform (DFT) matching method, 
the odd-order and even-order nonlinearities are 
matched independently through the odd and even 
members of the discrete Fourier transform of a period 
of the output (Barker and Godfrey, 1999). 
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and matching the even members yields the optimal 
values of ,  and T  that give 0K 2K 2
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As seen from Tables 1 and 2, the optimal values 
obtained by this method are similar to those obtained 
using the CCC, CCF and OUT methods with a 
pseudo-random binary input. 

 
 

6.  MULTI-LEVEL INPUTS 
AND HIGHER-ORDER SYSTEMS 

 
No analytical solutions are known for direction-
dependent systems that either have inputs with more 
than two levels or are of order greater than one, so for 
those systems cross-correlation component matching 
cannot be used and cross-correlation function 
matching becomes considerably less attractive.  
Output matching and output transform matching with 
inverse-repeat pseudo-random inputs are therefore 
preferred and the methods described in Section 5 can 
be applied in both cases. 
 
As an example of a system with a multi-level input, 
the same first-order system as before is considered, 
but with an inverse-repeat maximum-length pseudo-
random ternary input with levels –1, 0 and +1, and 
period N = 242. 
 
Fig. 5 shows that a close match between the system 
and model outputs can be obtained by the output 
matching method.  Table 3 shows that the optimal 
parameter values obtained by the output matching and 
output transform matching methods are remarkably 
consistent, and that the cubic component in the system 
and the model is very small. 

 
Table 3.  Optimal parameters for Wiener model of 

first-order direction-dependent system with inverse-
repeat pseudo-random ternary input 

 
Model parameters Matching

method K0 K1 T1 K2 T2 K3 T3

OUT 2.40 2.41 6.14 0.67 8.66 0.00 8.31
DFT 2.40 2.43 6.23 0.67 8.66 0.00 9.00
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Fig. 5.  Outputs of first-order direction-dependent 

system (o) and Wiener model (+) with inverse-
repeat pseudo-random ternary input 
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Fig. 6.  Outputs of second-order direction-dependent 

system (equal gains) (o) and Wiener model (+) 
with inverse-repeat pseudo-random binary input 

 
As an example of a higher-order system, the transfer 
function of the system dynamics is taken to be 

2
U )s1(

1
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 with T  when the direction of the 

system output is positive, and 

T3U =

2
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 when it is negative.  In the Wiener model, 
the transfer function in the j-th order path is taken to 

be 

TT 12D =

2)s1( j

j

T
K

+
.  The choice of critical damping for the 

linear dynamics in the Wiener model paths reflects the 
nature of the system dynamics, and reduces the 
number of parameters to be optimised, but is not 
necessarily optimal. 
 
Fig. 6 shows that a close match between the system 
and model outputs can be obtained by the output 
matching method.  Table 4 shows that the optimal 
parameter values obtained by the output matching and 
output transform matching methods are reasonably 
consistent. 

 
Table 4.  Optimal parameters for Wiener model of 

second-order direction-dependent system with 
inverse-repeat pseudo-random binary input 

 
Model Parameters Matching 

Method K0 K1 T1 K2 T2 K3 T3

OUT 0.46 2.22 6.94 0.94 3.63 0.01 7.03
DFT 0.46 2.16 7.41 0.94 3.63 0.74 2.01

 
 

7.   CONCLUSIONS 
 
As direction-dependent dynamic systems can be 
analysed in only simple cases, it is useful to model 
them in forms that are amenable to analysis, and 
Wiener models with paths of order 0 to 3 have been 
shown to be suitable for this purpose.  Methods for 
obtaining optimal values of the model parameters 
have been developed for those cases that can be 
analysed, which are first-order direction-dependent 
systems with binary inputs.  The methods involve 
matching appropriate functions or characteristics of 

the systems and models with either pseudo-random 
inputs or inverse-repeat pseudo-random inputs.  
Cross-correlation function matching methods give 
excellent results with pseudo-random inputs, but 
cannot give complete results with inverse-repeat 
pseudo-random inputs.  Output matching and discrete 
Fourier transform matching methods give excellent 
results with inverse-repeat pseudo-random inputs, and 
are to be preferred in this application.  These methods 
have also been used with good results in two cases 
that cannot be analysed, which are a first-order system 
with a pseudo-random ternary input and a second-
order system with an inverse-repeat binary input. 
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