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Abstract: Autoregressive moving average systems with exogenous inputs (AR-
MAX) are widely used in a variety of applied problems connected with identifica-
tion, adaptive control and time series analysis. This paper proposes the method
which enables one to estimate parameters in the ARMAX system with a prescribed
mean-square precision at the termination time. The procedure is constructed on
the basis of sequential analysis approach and makes use of special modifications
of estimates obtained by the method of instrumental variables. The method can
be used for guaranteed estimation (in mean-square sense) of spectral density of
ARMA processes. Copyright c© 2002 IFAC
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1. INTRODUCTION1

It is well known (Anderson, 1994; Box and Jenk-
ins, 1970; Goodwin, 1987; Kumar, 1985) that lin-
ear models are commonly used in different ap-
plied problems, connected with the design of con-
trol systems, predictors and filters despite the fact
that the majority of control systems in practice are
composed of nonlinear elements. One of the most
popular linear model is an autoregressive moving
average system with exogenous inputs (the AR-
MAX system) described by the linear difference
equation

A(q−1)yn = B(q−1)un−1 + C(q−1)en, (1)

where {yn}, {un} and {en} are the output, input
and noise sequences respectively; {en} is an un-
observed sequence of independent identically dis-
trubuted (i.i.d.) random variables with Een =

1Research supported by the Russian Foundation of Fun-
damental Research, grant 00-01-00880.

0, Ee2
n = 1; the input un (control) is non-antici-

pating sequence in the sense that it involves only
current and past observations yn, yn−1, un−1, . . . ;

A(q−1) = 1 + a1q
−1 + · · ·+ apq

−p,

B(q−1) = b1 + · · ·+ brq
−(r−1), (2)

C(q−1) = c0 + c1q
−1 + · · ·+ csq

−s

are polynomials; q−1 is the unit backward shift
operator (i.e. q−1yn = yn−1); ai, bj and cl are
constant parameters.

This model is quite general and comprises, in par-
ticular, autoregression process (AR), autoregres-
sive moving average process (ARMA) and others
which are often applied in time series analysis.
The ARMAX model is more flexible as compared
with the ARX model (autoregressive system with
exogenous inputs) because the disturbance is mod-
eled by the moving average and not by the i.i.d.
sequence. The problems dealing with the con-
struction of the ARMAX models (parameter es-
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timation) are considered by the identification the-
ory. In the classical setting, different techniques
have been developed to estimate the unknown pa-
rameters in (1): Gaussian maximum likelihood,
least squares, instrumental variables, Whittle es-
timation schemes and so on. As a rule, statistical
properties of estimates obtained by various meth-
ods are investigated in terms of large samples, that
is on the basis of information from series observed
a long time. It is expected that asymptotic prop-
erties of the procedures will hold approximately
for on-line estimates. However in practical prob-
lems a non-asymptotic behaviour of estimates may
be substantially different from the asymptotic one
and this discrepancy can cause undesirable effects.

The purpose of this paper is to demonstrate that
parameters of the ARMAX model can be esti-
mated with a preassigned precision (in mean-squ-
are sense) by the sample of finite size. Over the
past several years there has been substantial prog-
ress with regard to guaranteed estimation of pa-
rameters in stochastic dynamic systems in discrete
time. The advances have been achieved by apply-
ing the approach of sequential analysis which pre-
sumes that observations should be conducted un-
til enough information is gathered about unknown
parameters. The theoretical results were obtained
for AR, ARX processes and others (see Konev and
Lai, 1995; Konev and Pergamenshchikov, 1996 for
details and further references). For all these mod-
els the disturbance is modeled as a sequence of
i.i.d. random variables. This condition is not sat-
isfied for the ARMAX system. Here a modified
sequential estimation scheme for guaranteed iden-
tification of model (1) is proposed.

2. PROBLEM FORMULATION AND
PRELIMINARIES

In general, the identification problem for model
(1) consists in estimating all the parameters ai, bj
and ck. This paper proposes an estimation pro-
cedure for parameters ai and bj . Note that this
procedure can be complemented to comprise the
general case but the resulting procedure becomes
more cumbersome and it is omitted.

Let θ = (−a1, . . . ,−ap, b1, . . . , br)′ be the vector
of unknown parameters and

Xn = (yn, . . . , yn−p+1, un, . . . , un−r+1)′

be the vector of regressors (prime denotes the trans-
position). Then the model (1) can be rewritten as

yn = θ′Xn−1 + C(q−1)en. (3)

Assume that the vector c = (c0, . . . , cs)′ of the pa-
rameters of polinomial C is norm bounded, that

is ‖c‖2 ≤ L < ∞, where L is a known constant,
‖c‖2 = c′c.

The problem is to construct an estimator for vec-
tor θ which enables us to estimate θ with a fixed
mean-square accuracy. Our approach to this prob-
lem is closely connected with the method of instru-
mental variables. By this method estimate for θ
has the form (Ljung, 1987)

θ̂n =

(
n∑
k=1

φ(k)X ′k

)−1 n∑
k=1

φ(k)yk+1, (4)

where φ(k) = (φ1(k), . . . , φp+r(k))′ is a vector of
instrumental variables. It is worth noting that by
itself θ̂n does not give a solution to the stated
problem of guaranteed estimation because in con-
trust to the case of deterministic regression model
now the inverse matrix (

∑n
k=1 φ(k)X ′k)−1 is ran-

dom. By this reason the estimate θ̂n is a non-
linear function of observations and it is a very
complicated task to find the explicit formula for
its variance even for specific distributions of the
noise en. To solve this problem one can use a se-
quential estimation scheme based on the method
of instrumental variables.

3. GUARANTEED ESTIMATORS

The key idea of sequential analysis is to sample
until enough information is gathered about un-
known parameters. One of the thinkable ways to
construct a sequential estimate with a fixed mean-
square accuracy on the basis of (4) is to choose
properly a stopping time τ and to define the se-
quential estimate as θτ . For our purpose one stop-
ping time turns out to be insufficient and, actu-
ally, a sequence of stopping times are needed. The
procedure is constructed in two steps. First, a se-
quence of stopping times {τn, n ≥ 1} is introduced
as

τn = τ(hn) = inf{m ≥ 1 :
m∑
k=1

‖φ(k)‖2 ≥ hn},

where hn is non-decreasing sequence of positive
numbers such that

∑
n≥1 h

−1
n <∞. For each τn a

modified version of estimate (4) is defined by the
formula

θn = W+
n

[
τn−1∑
k=1

φ(k)yk+1 + αnφ(τn)yτn+1

]
,

where

W n =
τn−1∑
k=1

φ(k)X ′k + αnφ(τn)X ′τn ;



W+
n denotes the inverse matrix for W n if it exists

and W+
n = 0 otherwise; the weight multiplier αn

is determined from the equation

τn−1∑
k=1

‖φ(k)‖2 + αn‖φ(τn)‖2 = hn.

The second step. For each H > 0 a guaranteed
estimator of vector θ is defined as the weighted
average

θ∗(H) =

(
σ(h)∑
n=1

vn

)−1 σ(h)∑
n=1

vnθn, (5)

where the weights are defined as

vn =
{
h−2
n ‖W

−1
n ‖−2, if detW n 6= 0,

0, otherwise;

σ(H) is a number of modified estimates by the
method of instrumental variables used in the av-
erage,

σ(H) = inf{m ≥ 1 :
m∑
n=1

vn ≥ H}.

The total duration of the procedure is

T (H) = τ(hσ(H)) + 1. (6)

The pair (T (H),θ∗(H)) will be called sequential
plan. To investigate its properties the following
notation will be needed. Let Fn denotes the σ -
algebra generated by the random variables

{X̃0, e1, . . . , en, u1, . . . , un−1},

where

X̃0 = (y0, . . . , y1−p, u0, . . . , u1−r, e0, . . . , e1−s)′

is the initial state of system (1).

Theorem 1 Let for the system (1) there exists a
sequence of instrumental variables such that
(i) φ(k) - Fk−s - measurable for k > s and φ(k) =
0, k ≤ s;
(ii) ∑

k≥1

‖φ(k)‖2 = +∞,
∑
k≥1

vk = +∞ a.s.

Then for any H > 0 the sequential plan
(T (H),θ∗(H)) has the properties:
1◦. T (H) <∞ a.s.,
2◦. Eθ‖θ∗(H)− θ‖2 ≤ ρ/H,
where

ρ = (s+ 1)‖c‖2
∑
n≥1

h−1
n , (7)

Eθ denotes the mean by the distribution Pθ of the
process (1) for given θ.

Remark 1 The assertion of Theorem 1 holds true
if to change condition (i) to the following one (i′)
sequence {φ(k)} and {ek} are stochastically inde-
pendent.

4. ARMAX SYSTEMS WITH
QUASI-STATIONARY INPUTS

In this section the problem of guaranteed estima-
tion of parameters in the ARMAX system (1) is
cosidered in the case when the input sequence is a
quasi-stationary process (Ljung, 1987). This pro-
cess satisfies the following conditions.
A1. {uk} is a second order process such that

sup
k≥1
|Euk| <∞, sup

k≥1,l≥1
|Eukul| <∞.

A2. With probability one for each integer l

lim
n→∞

1
n

n∑
k=1

ukuk−l

= lim
n→∞

1
n

n∑
k=1

Eukuk−l = R(l).

A3. The spectrum function corresponding to the
correlation functions {R(l)} is strictly positive,
that is

F (ω) =
∞∑

l=−∞

R(l)e−ilω > 0, −π ≤ ω ≤ π.

A4. The input sequence {uk} and the noise se-
quence {ek} are stochastically independent.

Under these conditions the sequence of instrumen-
tal variables {φ(k)} is customarily defined as (see,
e.g., Ljung, 1987)

φ(k) = K(q−1)(xk, . . . , xk−p+1, uk, . . . , uk−r+1)′,
(8)

where K(q−1) is a linear stable filter; xk is a se-
quence satisfying the linear stable system

N(q−1)xk = M(q−1)uk,

where

N(q−1) = 1 + n1q
−1 + · · ·+ nfq

−f ,

M(q−1) = 1 +m1q
−1 + · · ·+mgq

−g,

and the orders of polynomials N and M are such
that

min(p− f, r − g) ≤ 0.

By applying the sequential estimation scheme de-
veloped in section 3 one obtains.



Theorem 2 Let polynomials A,B and C in (2)
be relatively prime and all the roots of A are greater
than one in modulus. Let the input sequence of
instrumental variables {φ(k)} be defined by (8).
Then for any H > 0 sequential plan (5),(6) has
the properties:
1◦. T (H) <∞ a.s.,
2◦. Eθ‖θ∗(H)− θ‖2 ≤ ρ/H,
(ρ is the same as in (7)).

Note that, if the sequence {uk} is non-random, as-
sumptions A1-A3 coincide with the requirements
imposed on the set of functions in problems of de-
termenistic regression (Anderson, 1994). The AR-
MAX system with a deterministic input sequence
uk may arise in the problems of deterministic re-
gression with a stationary noise depending on nui-
sance parameters. The following example illus-
trates this and allows one to compare asymptotic
and non-asymptotic estimation schemes.

Example
Consider the regression model

yn = bun−1 + ξn, (9)

where yn is observed process, un is non-random
function satisfying assumptions A1-A3, ξn is a sta-
tionary ARMA process specified by the equation

ξn = aξn−1 + en + c1en−1 + · · ·+ csen−s, (10)

with unknown parameters a, ci, |a| < 1, {en} is
a sequence of i.i.d. random variables such that
Een = 0, Ee2

n = 1. Consider the least squares
estimate for b by the sample {y1, . . . , yN}

b̂N =
∑N
k=1 uk−1yk∑N
k=1 u

2
k−1

.

Its mean square accuracy is

E(̂bN − b)2 =
∑N
k=1

∑N
i=1 uk−1ui−1

(
∑N
k=1 u

2
k−1)2

× a|k−i|

1− a2

s∑
j=0

s∑
l=0

aj−lcjcl.

From here it follows that

sup
−1<a<1

E(̂bN − b)2 = +∞,

that is for any fixed N one can not ensure mean
square accuracy of b̂N if no additional prior infor-
mation about a and ci is available.

Further the sequential estimation scheme in above
is developed to model (9),(10). From (9),(10) it
follows that

yn = θ′Xn−1 + C(q−1)en,

where θ = (a, b,−ab)′,Xn = (yn, un, un−1)′. The-
orem 2 implies

sup
−1<a<1

E(b∗(H)− b)2 ≤ ρ/H,

that is the sequential estimate b∗(H) for parame-
ter b ensures a given precision at the termination
time T (H) under the appropriate choice of the
threshold H.

5. THE CASE OF LINEAR CONTROL

In this section the identification problem for model
(1) is considered in the case when the input se-
quence un (control) is a linear function of the out-
put sequence yn. Assume that

un = D(q−1)yn, (11)

where

D(q−1) = d0 + d1q
−1 + . . .+ dmq

−m.

Substituting (11) in (1) yields

Ã(q−1)yn = C(q−1)en, (12)

where

Ã(q−1) = A(q−1)− q−1B(q−1)D(q−1)

= 1 + ã1q
−1 + . . .+ ãlq

−l, (13)

l = max(p,m+ r). Denoting
Xn = (yn, . . . , yn−l+1)′, θ = (−ã1, . . . ,−ãl)′ one
can rewrite (12) as

yn = θ′Xn−1 + C(q−1)en. (14)

The sequential estimation scheme developed above
can be used to estimate parameter vector ã with
a fixed mean-square accuracy by observations of
yn.

Theorem 3 Let all the roots of polynomial (13)
be greater than one in modulus and polynomials
Ã(z) and C(z), zsC(z−1) be relatively prime. Then
for any H > 0 sequential plan (T (H),θ∗(H)) de-
fined by (5),(6) with φ(k) = (yk−s, . . . , yk−s−l+1)′

has the properties:
1◦. T (H) <∞ a.s.,
2◦. Eθ‖θ∗(H)− θ‖2 ≤ ρ/H,

Examine asymptotic properties of the sequential
plan (T (H),θ∗(H)) as H → ∞. To this end it is
assumed that the sequence hn is defined as

hn = hn(H) =
{

H, if n ≤ n0(H),
n1+γ , if n > n0(H), (15)

where γ is a positive number, n0(H) = [Hg(H)],
[a] denotes the whole part of number a, g(·) is a
slowly increasing function, namely

lim
H→∞

g(H) = +∞, lim
H→∞

g(H)
Hα

= 0,

for each α > 0.



Theorem 4 Let Ee2β
1 < ∞ for some β > 2 and

0 < γ < β/2. Then mean duration of the proce-
dure (5),(6) satisfy the limiting relationship

lim
H→∞

EθT (H)
H

=
1

trΦ(0)
,

where

Φ(i) = lim
n→∞

1
n

n∑
k=1

φ(k)φ′(k + i), i = 0,±1, . . .

Theorem 5 Let E|e1|2+δ < ∞ for some δ > 0.
Then
√
H(θ∗(H)− θ) d→ N(0,W−1Γ(W−1)′),

where

Γ = trΦ(0)
s∑

i=−s
Φ(i)

s−|i|∑
m=0

cmcm+|i|,

W = lim
n→∞

1
n

n∑
k=1

φ(k)X ′k.

Thus the sequential estimator θ∗(H) is asymptot-
ically normal as the estimate obtained by the tech-
nique of instrumental variables.

6. CONCLUSION

The paper considers the identification problem for
the ARMAX system in non-asymptotic statement.
The sequential estimation scheme which enables
one to estimate the unknown parameters with a
prescribed mean-square precision at the termina-
tion time has been proposed. It can be applied to
different problems which may be reduced to the
identification of the ARMAX system. For exam-
ple, the proposed procedure can be used to solve
the problem of estimating the spectral density of
the ARMA process with a given mean-square ac-
curacy. The proposed procedure is based on the
method of instrumental variables. It includes sev-
eral stages which are needed to gather enough in-
formation about the unknown parameters.
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