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Abstract: Subspace identification algorithms are user friendly, numerical fast and stable and
they provide a good consistent estimate of the deterministic part of a system. The weak point
is the stochastic part. The uncertainty on this part is discussed below and methods to reduce
it is derived.
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1. INTRODUCTION

Compared to prediction error and maximum likeli-
hood methods the merits of subspace methods are
robust numerical algorithms which does not require it-
erative minimization. Subspace methods are also easy
to use as the only model structure information needed
is the system order. The drawbacks are lower perfor-
mance in terms of efficiency and also consistency for
the stochastic part.

Recently, consistency for the whole deterministic part
has been established under weak conditions (Bauer
and Jansson, 2000; Knudsen, 2001). Unfortunately,
similar good methods for the stochastic part under
these weak conditions are still missing.

The purpose of this paper is to discuss the above
problems and suggest methods to reduce it whit out
introducing iterative minimization or otherwise spool-
ing the merits of subspace methods. Below, the overall
problem is first stated then the notation and some
necessary basic assumptions are given. Estimation of
the deterministic part are reviewed as this gives the
basis for the following discussion of estimates for the
stochastic part and the uncertainty reducing methods
suggested. These new methods is compared to existing
ones by simulation experiments. Finally a conclusion
is drawn.

2. THE PROBLEM

Subspace identification is used to estimate linear sta-
tionary state space models from experimental input
and output data. The innovation representation of a
state space model is given in definition 1 and is con-
sidered most useful. Below uk ∈ R

m is the input, xk ∈

R
n is the state, yk ∈ R

l is the output and ek ∈ R
l

is the innovation which are zero mean white noise
with covariance R. The order n is assumed known
or estimated correctly which there is methods for
(Picci, 1997; Sorelius et al., 1997).

Definition 1. (Innovation model).

xk+1 = Axk +Buk +Kek

yk = Cxk +Duk + ek

E(epeT
q ) , Rδpq

The problem is then:
Given a series of input output measurements: estimate
all the parameters that is the system matrices A ∈
R

n×n
,B ∈ R

n×m
,C ∈ R

l×n and D ∈ R
l×m up to within

a similarity transformation and the noise parameters
K ∈ R

n×l
,R ∈ R

l×l so the covariance of the output is
given by the model.
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3. PRELIMINARIES

The basic relation used in the prediction error method
(Ljung, 1999) is the recursive state space model relat-
ing single samples of the signals. One of the principal
new ideas in subspace identification is to combine the
recursive state space model into single linear equa-
tions relating matrices with parameters to matrices
with signals. To do this some definitions are needed.

Definition 2. (Matrices related to signals). The
input block Hankel matrix is divided into two parts
called “past” and “future”, where the dimensions
are Up ∈ R

im× j
,U f ∈ R

hm× j. Based on the output
and innovation there are similar definitions for Yp ∈
R

il× j
,Yf ∈R

hl× j
,Ep ∈R

il× j and E f ∈R
hl× j. The total

number of samples used is N = i+h+ j−1.

(
Up

U f

)
,




u0 u1 · · · u j−1
u1 u2 · · · u j
...

...
...

ui−1 ui · · · ui+ j−2

ui ui+1 · · · ui+ j−1
ui+1 ui+2 · · · ui+ j

...
...

...
ui+h−1 ui+h · · · ui+h+ j−2




The state matrix Xk is defined as a sequence of states
starting from some sample k. Past and future state
matrices are defined by k = 0 and k = i respectively.

Xk ,
(
xk xk+1 · · · xk+ j−2 xk+ j−1

)
∈ R

n× j

Xp , X0 , X f , Xi

A column in a matrix e.g. Y f will be denoted with
lower letters y f and y f (k) if the specific column num-
ber is needed. This convention is used for all the signal
related matrices.

Definition 3. (Matrices related to parameter).
The extended observability matrix Γk is defined as

Γk ,




C
CA

...
CAk−1


 ∈ R

kl×n

A generic reversed extended controllability matrix
�

i
is defined below where � and � represent system and
input matrices respectively.
�

i( � , � ) ,
(
� i−1 ��� i−2 � · · · �����

)

Two lower block triangular Toeplitz matrices Hd
k and

Hs
k corresponding to the deterministic and stochastic

parts respectively are defined below based on the
generic block triangular Toeplitz matrices � k.

Hd
k , � k(A,B,C,D)

Hs
k , � k(A,K,C, I)

� k( � , � ,

�
, � ) ,




� 0 · · · 0� � � · · · 0� ��� � � · · · 0
...

...
...

...� � k−2 � � � k−3 � · · · �




Finally the covariance matrix for one column in H s
hE f

is needed.

Ph , Cov(Hs
he f ) = Hs

h(Ih⊗R)(Hs
h)

T

The basic assumptions needed are listed below. They
are very standard in system identification.

(A,C) is observable (O)

(A, [B K]) is controlable (C)

The input u is quasi-stationary (S)
The transfer function from e to y has all
zeros strictly inside the unit circle

(Z)

The input u and noise e is jointly quasi-
stationary and uncorrelated

(U)

Assumption (S) ensures that the limits for time aver-
ages involving u exists (Ljung, 1999, def. 2.1). For
these limits the notation E (1) will be used, it re-
duces to E in pure stationary stochastic cases and
lim j→∞

1
j ∑ j

k=1
in pure deterministic cases.

E((•)) , lim
j→∞

1
j

j

∑
k=1

E((•)k) (1)

Notice that uncorrelated in assumptions (U) involves a
quasi-stationary signal and is then defined by (2) and
holds for systems operating in open loop.

E(uk+τ eT
k ) = 0 ∀τ (2)

4. CONSISTENT ESTIMATE OF THE
DETERMINISTIC PART

The necessary basis for analyzing the estimate of the
stochastic part follows below. It is rather brief, for
details and proofs please refer to (Knudsen, 2001).
There are different theoretical frameworks for sub-
space identification (Verhaegen, 1994; van Overschee
and Moor, 1996; Ljung and McKelvey, 1997; Lari-
more, 1997). However, all frameworks have the focus
on the deterministic part in common.

The overall estimation method chosen here can be
outlined in three steps as follows: First, use the signal
and parameter matrices to establish a linear regression
model. Second, estimate a sufficient number of param-
eter matrices. The choice in this paper is Γh,H

d
h and

Ph. Third, based on these matrices extract the basic
parameters in the model (definition 1).

4.1 Linear regression model

The first matrix equation (3) is derived directly from
the model in definition 1.



Yf = ΓhX f +Hd
h U f +Hs

hE f (3)

Unfortunately Γh cannot be estimated from this model
because X f is not measurable. Therefore X f is related
to measurable signals i.e. input and output as follows
(Knudsen, 2001).

X f = LyYp +LuUp +LxXp , (4)

Ly ,
�

i(A−KC,K) ,

Lu ,
�

i(A−KC,B−KD) ,

Lx , (A−KC)i

(5)

Inserting (4) in (3) gives (6) which can be written
in a more regression type of way (7) by introducing
definition 4.

Yf = Γh(LyYp +LuUp +LxXp)+Hd
h U f +Hs

hE f (6)

Definition 4. (LS parameters and regressors).

Θp , Γh

[
Ly Lu

]
, Θ f , Hd

h , Θ ,
[
Θp Θ f

]

Wp ,

[
Yp

Up

]
, Z ,

[
Wp

U f

]

Notice that (7) is a LS regression model in the sense
that the residuals, columns in H s

hE f , is uncorrelated
with the regressors, columns in Z and Xp, due to
assumption (U) and ek being white noise.

Yf =
[
ΓhLy ΓhLu Hd

h

]



Yp

Up

U f


+ΓhLxXp +Hs

hE f

=
[
Θp Θ f

][
Wp

U f

]
+ΓhLxXp +Hs

hE f

= ΘZ +ΓhLxXp +Hs
hE f

(7)

Introduce the LS estimate (8) where Z must have full
row rank.

Θ̂ = Y f ZT (ZZT )−1 (8)

Inserting (7) in (8) gives (9) from which the limit in
theorem 1 can be derived.

Θ̂ = Y f ZT (ZZT )−1

= (ΘZ +ΓhLxXp +Hs
hE f )Z

T (ZZT )−1

= Θ+ΓhLxXpZT (ZZT )−1

+Hs
hE f ZT (ZZT )−1

(9)

Theorem 1. (Limit for Θ̂). Assuming (S), the input
persistently exciting of order i+h and (U) then

lim wp1
j→∞

Θ̂ = Θ+ΓhLx∆⇔ (10)

lim wp1
j→∞

[
Θ̂p Θ̂ f

]
=

[
Θp Θ f

]
+ΓhLx

[
∆p ∆ f

]
(11)

where

lim wp1
j→∞

XpZT (ZZT )−1 = ∆ =
[
∆p ∆ f

]
(12)

∆ ∈ R
n×i(l+m)+hm

,

∆p ∈ R
n×i(l+m)

, ∆ f ∈ R
n×hm

4.2 Estimate parameter matrices

The key observations now are: Θp is pre-multiplied
by Γh and so is the bias in (10) i.e. Θ̂p → ΓhL.
Based on these observations it turns out that Γh can be
consistently estimated under generic conditions using
SVD (13)-(15). The bias on Ĥd

h can be cancelled by
projecting onto Γ̂⊥h (18) the orthogonal complement
to Γ̂h which is found as U2 (13).

Theorem 2. (Γ̂h from Θ̂p). Assuming h ≥ n, the in-
put persistently exciting of order i + h and all basic
assumptions (O),(C), (S), (Z) and (U) then Γ̂h and
(Γ̂⊥h )T Ĥd

h are consistent for some limited is and i ≥
is ≥ n (16)–(18).

W1Θ̂pW2 = USV T

=
[
U1 U2

][
S1 0
0 0

][
V T

1
V T

2

]
, S1 ∈ R

n×n
(13)

T = I , W1 = I , W2 = (WpW T
p )

1
2 (14)

Γ̂h = W−1
1 U1T , |T | 6= 0 , T ∈ R

n×n (15)

lim wp1
j→∞

Γ̂h = Γh , i≥ is (16)

Ĥd
h = Θ̂d

f (17)

lim wp1
j→∞

(Γ̂⊥h )T Ĥd
h = (Γ⊥h )T Hd

h , i≥ is (18)

Remark 2.1. Notice that Γh is not unique but depen-
dent on the users choice where (14) works well.

4.3 Estimating model parameters

After having estimated the system matrices e.g. Γh
the model parameters can be estimated by solving the
following equations for the model parameters. The
right hand sides are simply the functional relation
giving in definition 3.

Γ̂h = Γh(A,C) , (19)

(Γ̂⊥h )T Ĥd
h = (Γ̂⊥h )T Hd

h (A,B,C,D) (20)

As these equations are over-determined there are many
solutions. A consistent method is shown below.

Theorem 3. (Estimating model parameters). Let
model parameters be estimated by (22)–(24) where
a MATLAB like notation is used and † denotes the
More-Penrose pseudo inverse. Assume h ≥ n + 1, the
input persistently exciting of order i + h and all basic
assumptions (O), (C), (S), (Z) and (U) then

Â, B̂, D̂, and Ĉ are consistent

for some is and i≥ is
(21)

Ĉ = Γ̂h(1 : l,1 : n) (22)

Â = (Γ̂u
h)

†Γ̂l
h , (23)

Γ̂u
h , Γ̂h(1 : (h−1)l, :) ,



Γ̂l
h , Γ̂h(l +1 : hl, :) ,

[
B̂
D̂

]
= argmin

B,D
∣∣∣(Γ̂⊥h )T Ĥd

h − (Γ̂⊥h )T Hd
h (Â,B,Ĉ,D)

∣∣∣
2

2

(24)

Remark 3.1. The minimization in (24) is a LS prob-
lem because the squared term is linear in B,D, and
(24) has a unique solution (in the limit) (Bauer, 1998,
p. 147).

5. ESTIMATING THE STOCHASTIC PART

Following the estimation method in section 4 the
residual covariance estimate P̂h is calculated (25) and
the parameters K,R is derived based on relation (26)
and the limit for P̂h derived below in theorem 4.

P̂h ,
1

j− ((i+h)m+ il)
j

∑
k=1

(y f (k)− Θ̂z(k))(y f (k)− Θ̂z(k))T

=
1

j− ((i+h)m+ il)
(Yf − Θ̂Z)(Y f − Θ̂Z)T

(25)

P̂h = Ph(Â,Ĉ,K,R) (26)

Theorem 4. (Limit for P̂h). Under the assumptions of
theorem 1 the limit for P̂h is

lim wp1
j→∞

P̂h = Ph +ΓhLxPx̃p
LT

x ΓT
h , (27)

Px̃p
= E(xpxT

p )−E(xpzT )E(zzT )−1E(zxT
p ) (28)

Remark 4.1. The limit for P̂h (27) includes Px̃p
which

is interpreted as the covariance for the estimation
error x̃p = xp − x̂p|z which also decreases with i.
Consequently the convergence for P̂h with respect to
i is fast due to the three factors LxPx̃p

LT
x all decreasing

to 0 with i.

Proof. According to (7) the residual is given by

v = y f − ŷ f

= Θz+ΓhLxxp +Hs
he f − Θ̂z

= (Θ− Θ̂)z+ΓhLxxp +Hs
he f

(29)

If the limiting residual is defined by (30) and the limit
for Θ̂ (10) is inserted (31) is obtained.

ỹ f , lim wp1
j→∞

v (30)

ỹ f =−ΓhLx∆z+ΓhLxxp +Hs
he f

= ΓhLx(xp−∆z)+Hs
he f

(31)

The definition (32) is introduced because if u is
stochastic with mean zero then ∆z is the optimal es-
timate of xp given z which is denoted x̂p|z. The last
equality below follows from (12) in theorem 1.

x̃p , xp−∆z = xp−E(xpzT )E(zzT )−1z (32)

Using (12) once again the following is obtained.

Px̃p
, E(x̃px̃T

p )

= E((xp−∆z)(xp−∆z)T )

= E(xpxT
p )−E(xpzT )E(zzT )−1E(zxT

p )

(33)

Now using that (xp,z) and e f are uncorrelated com-
pletes the proof as follows.

E(ỹ f ỹT
f ) = ΓhLxE((xp−∆z)(xp−∆z)T )

LT
x ΓT

h +Hs
h E(e f eT

f )(H
s
h)

T

= ΓhLxPx̃p
LT

x ΓT
h +Ph

(34)

Comparing the estimation problem for B,D and K,R
revels two important observations. The similarity is
that the bias for Ĥd

h and P̂h both lies in im(Γh). How-
ever, the difference is that Hd

h (A,B,C,D) is linear in
B,D while Ph(A,C,K,R) is not linear in K. This fact
makes the estimation method for B,D (24) unusable
for K,R.

A first estimation method for K,R which simply ig-
nores the bias is given below. It is only based on the
first block column in Ph.

Ph(1 : hl,1 : l) =




R
CKR

CAKR
...

CAh−2KR




=

[
R

Γu
hKR

]

R̂ = P̂h(1 : l,1 : l) (35)

K̂ = (Γ̂u
h)

†P̂h(l +1 : hl,1 : l)R̂−1 (36)

The second method is based on Cholesky factoring
of Ph. Notice that the Cholesky factor of a symmetric
positive definite matrix is unique.

R = GGT
,

Ph = Hs
h(Ih⊗R)(Hs

h)
T

= Hs
h(Ih⊗GGT)(Hs

h)
T

= Hs
h(Ih⊗G)(Hs

h(Ih⊗G))T

= � h(A,KG,C,G) � h(A,KG,C,G)T
,

� h(A,KG,C,G) =


G 0 · · · 0
CKG G · · · 0

CAKG CKG · · · 0
...

...
...

...
CAh−2KG CAh−3KG · · · G




With the Cholesky factorization below, K and R can
be estimated by (37)–(40). The LS problem (38) is
completely similar to (24) which is very convenient.

P̂h = ̂� h
̂� T

h (37)
[

M̂
Ĝ

]
= argmin

M,G
∣∣∣(Γ̂⊥h )T ̂� h− (Γ̂⊥h )T � h(Â,M,Ĉ,G)

∣∣∣
2

2

(38)



R̂ = ĜĜT (39)

K̂ = M̂Ĝ−1 (40)

The bias in ̂� h does not lie exactly in im(Γh) but
it probably has a large component there due to (27).
Consequently the method does not cancel the bias
term but it is lightly to reduce it.

A number of other approaches have been tried without
success. Increasing i to decrease the bias term in (27)
or using an estimate of Ly (5) to estimate K turned
out to give poor performance in tests similar to those
in section 6. The right hand side of (27) has also
been rewritten into a linear function of R,KR,KRKT

and LxPx̃LT

x , unfortunately a unique solution to this
equation could not be obtained for R and K in this way.

6. NUMERICAL EXAMPLES

The statistical performance of the methods is assessed
by Monte Carlo simulation. Experimental conditions
are 200 replications of 500 samples each. The S/N
ratios is approximately 10 and a suitable excitation
for the input u is used. To compare the results a state
base independent representation i needed. All esti-
mated state space models are therefore transformed
into ARMAX transfer function representation (41).

A(q)y(t) = B(q)u(t)+C(q)e(t) ,

Var(e) , σ 2
,

A(q) , 1+a1q−1 + · · ·+anq−n
,

B(q) , b0 +b1q−1 + · · ·+bnq−n
,

C(q) , 1+ c1q−1 + · · ·+ cnq−n
,

(41)

A first, second and forth order SISO system are tested.
The first order system is used in (van Overschee and
Moor, 1996, sect. 4.4.5) to illustrate these problems
as it has a eigenvalue of A− KC at 0.9996 which
is extremely close to the unit circle. Consequently,
Lx = (A−KC)i (5) decays slowly with i and so does
the bias term for P̂h in (27). The two other, more well
behaved systems are a second order ARMAX and a
forth order BJ system. The corresponding ARMAX
representation are given in table 1.

All the system are tested with the methods in table
2. In this paper it is necessary to chose only one per-
formance measure which is the rms for the parameter
estimation errors (42).

rmsi =
1
M

M

∑
j=1

(θ̂i j−θi0)
2 (42)

For easy comparison the results show in figure 1–3
are normalized with the rms for the method tk-chol.
For the first four subspace methods the choice of row
numbers are h = i = 3, 4 and 6 in the three test
systems which are the smallest possible for the subid
and n4sid methods. The fifth n4sid-auto method uses
automatic choice of h and i. Therefore it should have a

potentially better performance. Consequently, only the
first four subspace methods are directly comparable.
The last two prediction error methods are included to
give a lower limit for the obtainable rms.

Abb. Method Description
tk subspace (22)–(24), (35)–(36)
tk-chol subspace (22)–(24), (37)–(40)

subid subspace
(van Overschee and Moor, 1996, p.
131)

n4sid subspace L. Ljung Ident Toolbox
n4sid-auto subspace L. Ljung Ident Toolbox
pem PEM L. Ljung Ident Toolbox
trftk PEM (Knudsen, 1996)

Table 2. Methods included in the test.

   a1 b0 b1 c1 s2    
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Rms on par. est. relative to tk−chol, VO example

tk        
tk−chol   
subid     
n4sid     
n4sid−auto
pem       
trftk     

Figure 1. Rms on parameter estimates relative to tk-
chol, VO example

   a1 a2 b0 b1 b2 c1 c2 s2    
0

0.5

1

1.5

2

2.5

3

3.5

4
Rms on par. est. relative to tk−chol, ARMAX example

Figure 2. Rms on parameter estimates relative to tk-
chol, ARMAX example. Y-axis truncated.

As uncertainty in the stochastic part is assessed here
the focus is on the parameters c1, . . . ,cn and σ 2. Based
on rms performance for these parameters in the three
test cases it is clear that the new tk-chol method is
the superior subspace method for the stochastic part
but it can not compete with the best prediction error
method. Notice also that the automatic choice of h
and i in n4sid-auto does not improve performance and
that the tk-chol methods is very much better than the



System a1 a2 a3 a4 b0 b1 b2 b3 b4 c1 c2 c3 c4 σ2

VO -0.9490 -2.08950 3.624 -0.9996 6.7050
rms 0.0041 0.25689 0.303 0.2048 1.5246
ARMAX -1.6464 0.730 0 0.044 0.0398 -1.4026 0.730 0.0030
rms 0.0130 0.011 0.00649 0.010 0.0096 0.0699 0.116 2.8e-4
BJ -2.8148 3.134 -1.64 0.344 0.10000 -0.140 0.2067 -0.252 0.108 -0.3864 -0.546 0.461 0 0.0001
rms 0.2205 0.458 0.35 0.098 0.00070 0.022 0.0149 0.034 0.031 0.2079 0.076 0.086 0.091 1.67e-5

Table 1. System parameters and rms values for the tk-chol method.

   a1 a2 a3 a4 b0 b1 b2 b3 b4 c1 c2 c3 c4 s2    
0

0.5

1

1.5

2

2.5

3

3.5

4
Rms on par. est. relative to tk−chol, BJ example

Figure 3. Rms on parameter estimates relative to tk-
chol, BJ example. Y-axis truncated.

other methods in some cases. For the deterministic
part, i.e. parameters in A(q) and B(q), the tk-chol
method is only the best subspace method for the BJ
case. Simulation results not show here revels that the
tk-chol method has the smallest bias for 500 samples
but still has asymptotic bias as expected.

7. CONCLUSION

In subspace identification the focus has so far been on
estimating the deterministic part of the system in ques-
tion. The result is well performing consistent methods.
However, for the stochastic part the existing methods
gives large uncertainty partly doe to bias. This paper
discusses possible improvement for the stochastic part
compared to the existing methods. The development
of two new methods indicates reduced uncertainty es-
pecially for the one using Cholesky factorization. This
is verified by simulation for three test cases.
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