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Abstract: The filtering problem for discrete Volterra equations is a nontrivial task
due to an increasing dimension of the equivalent single-step process model. A
difference equation of a moderate dimension is chosen as an approximate model for
the original system. Then the reduced Kalman filter can be used as an appro ximate
but efficient estimator. Using the duality theory of convex variational problems, a
level of nonoptimality for the chosen filter is obtained. This level can be efficiently
computed without exact solving the full filtering problem. Copyright (©)2002 IFAC
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1. INTRODUCTION

Various processes in motion control, space vehicle
dynamics, mechanics, etc. are described by linear
Volterra equations (Volterra, 1959; Kolmanovskii
and Myshkis, 1999). In the paper, the mean-
square filtering problem for discrete Volterra
equations is considered. System perturbations
and measurement noise are zero-mean white
noise processes.  Clearly, a discrete Volterra
equation can be treated as an extended single-
step equation of a corresponding order. So, the
classical Kalman filtering technique could be used
to solve the problem. However, the exact solving
the filtering problem for Volterra equations is a
nontrivial task.

In fact, if the amount of measurements is large
(that is the case in most applications), then the

operation with the matrices of very high dimen-
sion is unavoidable that leads to the accumulation
of computational errors and to the critical
retarding of the calculations. A way to overcome
these unfavorable factors is to use simplified filters
of moderate dimension. In this case, it is necessary
to evaluate the level of nonoptimality for these
simplified filters, remaining in the framew ork of
relatively modest computation. In the paper, such
approach is developed.

2. PROBLEM STATEMENT

Consider a discrete linear Volterra equation
J
#(j+1) =Y A k)e(k) + B()u(i), (1)
k=0

z(0) = zo, j=0,...,N—1,



where z(j) € R"™ is the system state vector;
A(j, k) € R™ ™, B(j) € R™" and u(j) € R’
is a perturbation vector. A prime denotes the
transposition sign. The perturbations w(j) are
assumed to be a zero-mean white noise process
with the covariance matrix Q(j) > 0:

E (u(f)v'(k)) = Q(7)djx,  (2)

jok=0,...,N—1,

where J;1 is the Kronecker delta.

The measurements for the state vector have the
form
z(k) = H'(k)x(k) + o(k),  z(k), (k) € R™,
(3)

H(k) eR™™,  k=0,...,N

The measurement errors p(k) are also assumed
to be a zero-mean white noise process with the
covariance matrix R(k) > 0:

E (o(k)d'(s)) =

k,s=0,...,N

Eo(k) =0, R(k)ors, (4)

The initial state vector of the system is a zero-
mean random variable:

Ez(0) =0, E (z(0)2'(0)) = P, > 0 (5)
(2(0), w, and p are mutually independent). The
problem is to evaluate the scalar quantity . =
a/z(N), where a € R™ is a given vector, with the
help of linear functionals

”:Z@'(i)z(i), ®(i) eR™.  (6)

The optimal mean-square filtering problem is to
find an estimator ®° that minimizes the mean-
square estimation error:

d(@°) =  inf
FcR™X(N+1)

)={E(i-1) }%

For the Volterra equation (1), the resolvent R(s, )
is defined by the equations

d(®), (7)

]~

RGj+1,6) =S AG WR(kD), >t

Bl
I

t

(8)
J
R(j+1L,t)=Y R(G+1,k+DA(kt), t<j,
k=t

R(t,t) = E,, R(t,s) =0, s>t

where F, is the identity matrix of order n.

It can be shown from (1), (8) that

j-1

#(7) = R(7,0)(0) + Y R(j.k + 1)B(k)u(k). (9)
k=0

Introduce the quantities:

(1) the function £%(j), which is defined by the

difference equation for a given {®(j) ;ié\f

E)= Y A+ 1) - HGBG) (10)

with the boundary condition

5(I)('N’):a_‘H-(‘Z\]')(I)(]\r)a j=0,....,.N-1;
(2) the functional J(®_, ®, w): R" CR™*(N+1)

xR™N _ RL:

J(®_, B, w) = {<I>’_P0<I>_ (11)
e +Y w(+1QU G+ |

Using (8) and (10), it can be easily shown that

N

> R'(i, k) H(i)®(i)

i=k

R'(N,k)a — =& (k), (12)
k=0,....,N
Direct computation by virtue of (3), (6), (9), (12)

result to the formula
, N
[—1. = =& (0)z(0) + Y _ @ (i)oli) (13)

=0

N-1

25‘1”3+1 (7)uls)-

Jj=

Then, from (2), (4), (5), (7), (11), and (13),
d(®) = J(2_ (D), P, w(P)), (14)

where the quantities ®_(®) and w(®) are defined
by the constraints

0=30_ _€§(0)7 (15)
0=w(j+1)—B'(5)E(+1),
j=0,...,N—1.

Thus the optimal mean-square filtering problem
reduces to the following linear-quadratic convex
variational problem:

Jo = inf J(®_, &, w) (16)
<I>_ER", <I>ERmX(N+1) , wER"XN

under constraints (15).



3. BASIC RELATIONS FOR THE FILTERING
PROBLEM SOLUTION

The structure of the filtering problem solution
is described by the following basic result that
uses the notion of the primal and dual variational
problem.

Theorem 1. 1°. The solution {®°, ®°, w'} of the
linear-quadratic problem (15), (16) is given by the

relations
= £(0), (17)
®°(3) = R (3)H' (i)n(3), i=0,...,N,
wl(j +1) = B'(5)¢( + 1), j=0,....,N—1,

where £(7), n(j) satisfy the multi-step boundary
value problem

£G) = Z A'(k, )& (k+1)—H () R~ () H' ()n(4),
= (18)
J+1) =Y A, B(j)Q()B' (/)¢(j+1),

j=0,...,N -1,

with the boundary conditions

n(0) = Po&(0).

2°.  Boundary value problem (18) has a unique
solution.

3°. The dual problem to the primal problem (15),
(16) has the form

JO = sup a'Z(N) (19)
pERrXN, )\ER”

under the constraint

where the process #(j) = &(j;p, A) satisfies the

Volterra equation
i
J+1:Z , k)E(k) + B(j)p(j + 1),

p(i+1) eR’,
with the initial condition #(0) = A.

Moreover,

Jo = J°. (21)

4%, The solution for the dual problem (19), (20) is
determined by the formulas

p°(5+1) = J3'QU)B ()¢ + 1), (22)

A0 = J5 1Py (0), j=0,....,N—1.
The proof is based on the general theory of convex

variational problems (Ekeland, Temam, 1976).
Note that (17) and (18) imply the equality

¥ (5) = £09),

It follows from Theorem 1 that the finding of the
optimal estimator reduces to the solving of the
boundary value problem (18). Unfortunately, the
solving of (18) without a substantial extending of
dimension remains a serious problem.

j=0,...,N.  (23)

In this case, the following approach is proposed.
An approximate simplified estimator ¢ is sought
instead of the optimal ®°. The approximation
quality is defined by the ratio

A = d(p) /d(3°), (24)
Obviously, A > 1. Since ®° is unknown, A is
unknown. Then the aim is to construct an upper
bound A° for A that can be computed without
exact solving the optimal problem (15), (16). If
AP is not large, then the use of the estimator ¢ is
Jjustified.

4. KALMAN FILTER FOR REDUCED
SYSTEM

A natural way to simplify the Volterra equation is
to replace the full model by the following reduced
model in which the “tails” y(j —s —1),...,4(0)
are disregarded:

yi+1) = Z A7, k)y(k) + B(7)u(s),
ji=0,...,N—1, (25)
y(0) = zo, A(7,k) =0 for k<O.

The noise %(j) € R" is a zero-mean white noise
process with a covariance matrix Q(5):

E (a(j)a' (k) = Q(7)dx,  (26)
jk=0,...,N—1.

Eu(j) = 0,

The model for the measurements is defined by the
equation

z(k) = H'(k)y(k) + o(k), (27)

#(k),a(k) €ER™,  k=0,...,N.



The measurement noise p(k) is a zero-mean white
noise process with a covariance matrix R(k):

E (e(k)¢'(s)) = R(k)drs;  (28)
k,s=0,...,N.

Eg(k) =0,

The model equation (25) has the same coefficients
as equation (1) but

A E) =0, j—k>s. (29)

The design matrices Q(k) and R(k) are set by a
researcher. In particular, one can put

R(k) = B2 R(K),  (30)

Qi) = Q)
where (31, 32 are positive scalars,

j=0,....N—1, k=0,...,N.

Theorem 1 is also valid for the reduced model
equation (25) with the additional restriction (29).
Thus the related reduced boundary value prob-
lem yields an approximate estimator. In contrary
to the full problem this reduced boundary value
problem for moderate values of s possesses an
efficiently computed solution.

In fact, the model system (25)-(30) can be easily
represented in a single-step form by introducing
the augmented n(s + 1)-dimensional state vector

XG) =),y G 1))
Then the system (25)—(30) turns into the system
X(G+1) = AG)XG) + BG)uG),  (31)
2(k) = H' (k)X (k) + a(k), (32)
i=0,....,N—1, k=0,...,N,
EX(O) =0, E (X(O)X’(O)) = Po, (33)

in which the scalar quantity I, = &’X'(N) is to be
estimated. The augmented matrices (their sizes
are s+1 times greater) are defined by the following
expressions:

. E, ... 0 0
Alf)= ) : ) )
0 E, 0
B(j) H(k) a
0 0 R 0
B(j) = Cum=| L |oa=| |
0 0 0
and
Py 0 0
0 E, 0
Po = . .
0 0 . E,

System (31)-(33) has a standard Kalman form.
Thus the optimal linear mean-square estimate for
l. is yielded by the discrete Kalman filter. It
follows directly from the Kalman filter theory
(Jazwinski, 1970; Matasov, 1999) that the desired

simplified estimator ¢ is given by the formulas

o(i) =K'()®'(N,i)a, i=0,...,N, (34)
O(N,i) =O(N—1)-...-6(i+ 1) - 6(i),

0(i) = (Bn(s1) — K(i+ 1)H (i + 1)) A(0),

O(N,N) = By(s11),  i=0,...,N -1,

where the Kalman gain K(¢) is determined by the
classical equations

k() = Plili — DR() (35)
< [Pl - VR + RG]
" P(il7) = (B - K(G)H ()Pl - 1),
P(0|—1) = Po, j=0,...,N,
P(jli—1) = AG-1P( -1l - DA -)
—I—B(j—l)Q(j—l)Bl(j—l), j=1,...,N.

By virtue of (23) the estimator ¢ generates an
approximation to the function £(j) by the formula
é(g) = £%(j). Similarly, the approximations to
the dual elements (p°(j + 1), A°) from (22) can be

constructed by the equalities
P’ +1) =v Q()B ()& (j +1), (36)

A0 = v Pye®(0), j=0,....N—1,

where £ is given by (10) and v is an appropriate
positive scalar.

So, the estimator ¢, the function £¥, and the dual
elements (p°, A°) can be computed by a simple and
reliable algorithm.

5. LEVEL OF NONOPTIMALITY FOR
SIMPLIFIED FILTER

In accordance with the proposed approach the
estimator ¢ obtained for the system (25)-(30) is
used instead of the optimal one.

Theorem 2. Let ¢ be the filter for the reduced
model. Then the following inequalities hold:

Ly '
1<A<A®, A= 7

B

72 = {7 (0Pt (0) + 3¢ () R()eli)  (38)



£ Y G DBORNB e+ D}

=0

ke = {€(0) Pot* (0) (39)

N
+ & (i) H (i) R™ (i) H' (i) &% (4)
=0
N-1 1
+ €7+ DBGIQUIB (e +1)}
=0
and the auziliary process ©9(j), j = 0,..., N, is
defined by the Volterra equation

7(7+1) :z]: (40)

+B()QU)B ()67 (1 +1)

with the initial value £¥(0) = Pol¥(0).

The idea of the proof. The proof is essentially
based on the duality theory (Ekeland and Temam,
1976). It follows from (14), (15), and (24) that the
level of nonoptimality A can be rewritten in the
form

A=J(2-(¢) o w(e))/Jo=T%/Jo.  (41)
In order to get the upper bound for the level
of nonoptimality (41) a lower bound should be
constructed for the optimal estimation error Jo.
In accordance with the duality relation (21), any
admissible pair (p, A) (that is a pair satisfying
(20)) generates such a lower bound. The one-
dimensional manifold (36) is taken to obtain a
“good” lower bound. In other words, the dual
problem (19), (20) is replaced by an appropriate
one-dimensional problem. Choosing the best value
for the scalar parameter v, the required bound is
constructed.

The algorithm for calculating A® consists of the
following steps:

Step 1. The calculation of the Kalman gains
{K(j)}j\f:_ol defined by (35);
Step 2. The calculation of the model filter
{p(3)}, by formulas (34);

Step 3. The calculation of the function {£# ()} =0
by difference equation (10);

Step 4. The calculation of the auxiliary process

{2%(4) j»v:o, in accordance with Volterra equation
(40);

Step 5. The calculation of the quadratures J¥ and
k? by (38) and (39);

Step 6. The calculation of A° by formula (37).

Table 1. Example 1: values of A°;
filter order s = 8

N 120 160 200 240 280 320 360 400

A°  1.22 1.34 1.48 1.64 1.82 2.06 2.24 2.41
Agpt 1.21 1.33 1.47 1.62 1.79 1.97 2.16 2.36

B 08 0.7 0.7 07 07 07 07 0.7
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

It should be emphasized that all these operations
can be easily implemented.

6. NUMERICAL EXAMPLES

In this section, two simple examples of linear
discrete Volterra equations are investigated. (The
computation was performed by A.B. Bashkov.)

scalar

Example 1. Consider a stationary

equation of the form

J

z(j+1)= Zaj_k'l'lx(k) + (), (42)
k=0
:B(O)::B()a _7—0, .,N—]_’
and the measurements
z(k) = z(k) + o(k), k=0,...,N,

where « is a specified scalar, zg is a zero-mean
random variable with a given variance 2. The
sequences u(j) and p(k) are scalar zero-mean
white noise processes with constant variances @)
and R, respectively. The quantity z(N) is to be
evaluated. Obviously, this is a special case of
gystem (1), (3) withn=r=m =1,

A(j, k) =a~F* B(j)=1, H(k)=1, a=1.
The following parameters are taken for simulation:

Q=1,

The values of A for various N with two val-

a=05 o%=100, R=1.

ues of the filter order s are shown in Tables 1
and 2. The quantities A° for £ = B2 = 1.0 are
presented in the first row. The quantities AY that
were optimized in scales 01, B2 are indicated in the
second row. The corresponding optimal values of
B1, B2 are cited in the third and fourth row. Note
that though « = 0.5, the estimated process (42)

does not decay: Ez(N) = 0, Ez?(N) ~ N for
large N.
Example 2. Now consider a two-dimensional

Volterra equation

2(i+1) = Z s (w 1) o(k) + (i), (43)



Table 2. Example 1: values of A%;
filter order s = 9

N 120 160 200 240 280 320 360 400

Table 4. Example 2: values of A°
for N =100 and w =1.0

s 14 15 16 17 18 19

A°  1.07 1.11 1.16 1.23 1.30 1.39 1.48 1.58
Agpt 1.06 1.11 1.16 1.22 1.29 1.38 1.47 1.56

B 09 0.9 08 08 0.8 07 0.7 0.7
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

A° 943 466 244 148 1.14 1.03
AQ, 6.38 373 222 145 113 1.03

B 70.0 21.0 7.0 2.5 14 1.1
2 1.0 1.0 1.0 1.0 1.0 1.0

Table 3. Example 2: values of A°
for N =100 and w = 0.8

s 8 9 10 11 12 13

A° 9.74 450 233 1.43 112 1.03
Agpt 3.03 241 177 133 111 1.03
51 42.0 22.0 9.0 4.0 2.0 1.2

2 1.0 1.0 1.0 1.0 1.0 1.0

z(0) = zo, r = (z1,22), j=0,...,N—1,
and the scalar measurements
z(k) = z1(k) + o(k), kE=0,...,N.

The aim is to estimate the component z2(N).

Here « is a specified scalar, zg is a zero-mean
random vector with a given covariance matrix Py,
the sequences u(j) and p(k) are zero-mean white
noise processes with a covariance matrix () and a
variance R. This is a special case of system (1),
(3) withn=r=2, m=1,

A(j,k):aj_k“(%) 1) B(i)z(é 2)

(1),

The following values for the parameters are set:

100 0
P°_< 0 100)’

10
e=(3 1)

Tables 3 and 4 represent the quantities of A° for
N = 100 and various values of filter order s with
w = 0.8 and w = 1.0, respectively. The zero-mean
solutions of (43) are also unbounded: Ez2(N)~N
for w = 0.8; Ex3(N)~ N3 for w = 1.0.

a = 0.5,

R=1

It follows from Tables 1-4 that the reduced filters
of moderate orders can be successfully used for the
filtering in Volterra equations. Moreover, in some
cases, the scales (31, B> can be adjusted to improve

the nonoptimality level. Note that the developed
approach reduces hundreds of times the implemen-
tation time relative to the direct optimal Kalman

filter.

The filters presented in Section 4 seem to be the
most natural ones to start the design. They were
chosen to emphasize the main idea. Omne can
propose more sophisticated schemes to simplify
the filters that yield the same nonoptimality levels
but operate with systems of smaller orders.

7. CONCLUSION

Efficient filtering algorithms for linear discrete
Volterra equations are proposed. On the one
hand, the filtering algorithms are quite easy
for implementation. On the other hand, the
levels of nonoptimality for these algorithms are
constructed. It is important that the levels of
nonoptimality can be easily computed without
solving the original full-dimensional filtering
problem. Thus a useful tool for analyzing the fil-
tering problem in Volterra equations is developed.

Similar approach was earlier used for various
estimation and control problems, in particular, for
dynamic systems with delay (Matasov, 1999).
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