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Abstract: This paper presents the application of the positive invariance concept to real-time
control of a two-tanks system in the presence of hard constraints on the output and control
signals. Results show that it is possible to regulate correctly the laboratory plant without
violating the output and control constraints, when controlling the system with the output-
feedback controller designed using the positive invariance concept. Copyright c 2002
IFAC
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1. INTRODUCTION

Generally, real systems are subjected to limitations of
physical or technological order. These limitations can
usually be described as inequality constraints on the
process variables. The positive invariance concept is
largely used to take into account such constraints in
the design of the control laws, [Benzaouia et al (1988),
Benzaouia (1991, 1994), Blanchini (1999) and the
references therein]. This enables the designer to avoid
the saturation phenomenon, which could induce bad
performance, or even unstability, when the controller
is implemented in the real system.

However, from the authors knowledge, very few appli-
cations using these techniques to solve a real problem
have been presented in the literature, even at labora-
tory scale [Pittet (1998)]. In this work, this concept
is used to achieve the regulation of the water level
in a two-coupled-tanks process. An output-feedback
controller is designed to solve the regulation problem
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in the presence of constraints on the input and the
output vectors.

The paper is organized as follows: Section II is re-
served to the preliminaries while the process is de-
scribed in section III. Simulation and implementation
are done in section IV. Finally, some conclusions are
presented.

1.1 Notations:

For two vectors x and y ofRn and a matrixA 2 Rnxn,
the following notation will be used:

� x < y (respectively x � y) if xi < yi (respec-
tively xi � yi), i = 1; :::; n.

� In is the identity matrix of Rn

� Matrix eA 2 R2nx2n is defined by,

eA =

�
A+ A�

A� A+

�
where
A+(i; j) = sup(A(i; j); 0)
A�(i; j) = sup(�A(i; j); 0)

�
i; j = 1; :::; n.
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2. PRELIMINARY RESULTS

This note is devoted to study the system described by,

xk+1 =Axk +Buk (1)

yk = xk + zk

where xk 2 Rn is the state of the system, uk 2 Rm

and yk 2 Rp are the control and output signals, re-
spectively. Vector zk is the output of a noise bloc. Ma-
trices A;B and C are constants with appropriate di-
mensions. The control vector is constrained to evolve
in the set 
 defined by,


 = fu 2 Rm=� umin � uk � umaxg (2)

Vectors umin and umax are constant. Furthermore,
the output is also constrained to evolve in the set D
defined by,

D(In; ymin; ymax) = fyk 2 R
p=� ymin � yk � ymaxg

(3)

The noise affecting the plant is modeled by the follow-
ing system,

sk+1 = Psk +Qek (4)

zk = sk

where the scalar ek is a white noise such that,

jekj < 1 (5)

Definition A set D � Rn is said to be positively
invariant with respect to system

xk+1 = f(xk; uk)

if for any xo 2 D, the trajectory x(xo; k; uk) of the
system does not leave the set D for any k � 0.

Now, consider the first equation of system (1), i.,e.,

xk+1 = Axk +Buk (6)

The following result recalls the necessary and suffi-
cient condition allowing the positive invariance prop-
erty of the set,

D(In; xmax; xmin) = fx 2 Rn=� xmin � x � xmaxg

Theorem 1 [Benzaouia et al., 1988b] DomainD(In; xmax; xmin)
is positively invariant with respect to system (6) if
and only if,

(I2n� eA)X � eBU
Where

X =
�
xTmax xTmin

�T
U =

�
uTmax u

T
min

�T

3. DESCRIPTION OF THE PLANT

The plant is in the Department of Engineering and
Automatic Systems of the University of Valladolid,
Spain. As depicted in Figure 1, the process is com-
posed of two tanks: the water is pumped indepen-
dently to both tanks. The control signals are the pumps
flowrates. The liquid leaves the tanks by gravity from
an outlet near the bottom of the tanks. There is an
additional outlet that connect the tanks via a short
pipe. The liquid level in the tank is measured by a
capacitive sensor

The plant can be modeled by the following discrete-
time state-space model:

xk+1 =Axk +Buk

yk = xk + zk

where

A =

�
0:4611 �0:0002
0:0000 0:4584

�
, B =

�
0:6708 0:0518
0:0102 0:7780

�

The noise bloc is modeled by system (4) with,

P =

�
0:4611 0
0 0:4584

�
, Q =

�
16:7075
22:2192

�
Using theorem 1, given ek such that

�1 � ek � 1

It is possible to find zmax and zmin such that,

(I2n� eP )Z � eQE
where

Z =
�
zTmax zTmin

�T
, E =

�
1 1

�T
indeed, (I2n� eP ) is a positive diagonal matrix, that is
(I2n� eP )�1 is a positive matrix, consequently, vector
Z can be chosen as,

Z = (I2n� eP )�1 eQE
=
�
31:0045 41:0256 31:0045 41:0256

�T
In the sequel, the system will be closed using an output
feedback control law,

uk = Fyk = Fxk + Fzk

using (1) and (4), one can write,

uk+1 = F (A+BF )xk + F (P +BF )zk + FQek

If there exist a matrix Ho such that,

FA+ FBF = HoF

then,

uk+1 = Houk + (FP + FBF �HoF )zk + FQek



Fig. 1. The two-coupled-tanks process.

which can be written as,

uk+1 = Houk +H1zk +H2ek (7)

with

H1 = FP + FBF �HoF and H2 = FQ

using Theorem 1,
 is positively invariant with respect
to system (7) if,

(I2n� fHo)U � fH1Z + fH2E (8)

The constraints on the output must also be considered.
For this recall that the output signal can be expressed
as:

yk+1 = xk+1 + zk+1

= (A+BF )yk + (P �A)zk +Qek

using Theorem 1, constraints on the output are re-
spected if,

(I2n� (Â+BF ))Y � (P̂ �A)Z + eQE (9)

with

Y =
�
yTmax y

T
min

�T
To design the control law, the following steps must be
fulfilled:

(1) Given a stable matrix Ho such that,

fHoU < U

(2) Solve equation

XA+XBX = HoX (10)

to find the feedback gain F: Compute matrices
H1 and H2.

(3) If (8) and (9) are satisfied then stop, else return
to step1 and change Ho:

4. SIMULATION AND IMPLEMENTATION

The nominal working point is selected to be 45% of
each maximal input value; the corresponding outputs
are 60% and 65% of the maximal outputs, respec-
tively. To accomplish this work, the system is centered
around the nominal working point. That is,

umax =

�
55
55

�
, umin =

�
45
45

�

ymax =

�
40
35

�
, ymin =

�
60
65

�
We choose

Ho =

�
0:3227 0:0273
0:0227 0:3273

�
the resolution of (10) gives,

F =

�
�0:2072 0:0481
0:0372 �0:1709

�
we obtain,

H1 = 10�4 �

�
�0:0142 �0:3747
0:0697 0:0628

�

H2 =

�
�2:3922
�3:1763

�
Inequalities (8) and (9) are satisfied. Figure 2 presents
the components of output and input vectors calculated
using a simulation of the plant.

The initial output vector is:

yo =
�
7:5 �9:6

�T
Using the same feedback gain F in the real process,
and starting from the same initial condition, the trajec-
tories of the output and the input vectors, presented in
Figure 3, were experimentally obtained.

Globally, the obtained results are satisfactory despite
the problem which appears in the time axis. In our
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Fig. 2. Trajectories of the output and the control com-
ponents.
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Fig. 3. Trajectories of output and control components.

opinion, this problems is generated by an incorrect
modelisation of the process.

5. CONCLUSION

The positive invariance concept has been applied to
regulate liquid levels in a laboratory plant that consists
of two coupled tanks. An output-feedback controller
is used to realize our goal. The designed controller
have been tested using both a simulation of the model
and an implementation of the control law on the real
process. It has been shown that the control objectives
has been accomplished: constraints on the output and
the input vectors are respected without any saturation.
The tracking problem with constraints on the input and
output of the process can be an interesting question to
deal with in a future work.
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