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Abstract: In this paper new nonlinear control systems modelling methodology is presented.
The nonlinear system is given in the form of NARX model. Modelling method is based on
decomposition of the nonlinear function (right-hand side of the NARX model) into multiple
local linear mappings. These mappings are represented by a self-organising neural network
and a local linear mapping is associated with each neuron. The network is trained by a
combination of vector quantisation and Winner Takes Most procedure. The application of
the proposed method to modelling of nonlinear control system is also given.
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1. INTRODUCTION

Modelling and control of nonlinear dynamical systems
is one of the most important but also the most chal-
lenging areas of system theory. There has been a great
deal of research activity in this area, mainly focused
on approaches like neural networks and fuzzy logic.
However, much of this work on identifying nonlinear
input-output model produced methods with little or no
insight into the underlying data generation process.
On the other hand, there has been a great progress
in the basic research into, so called local approaches
to modelling. These included classical control ap-
proaches (Taylor linearisation), statistical methods,
neuro- and fuzzy architectures (B-splines and Radial
Basis Function networks) etc. (Johansen and Murray-
Smith, 1997).

In this paper we consider a deterministic, non-linear,
single-input single-output (SISO) system given by the
discrete-time input-output Nonlinear AutoRegressive
with eXogenous input (NARX) model

y(k+1):f(y(k)7'--7y(k_n+1)a
u(k),...,u(k —m+1)) 1)
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withy € [a,b] CR, u € [¢,d] CRand f: D — [a, b]
with the domain of definition D = [a, b]" X [c,d]™.
It is physically natural that  and « assume only finite
values on a connected set and can attain their bounds.
In fact D is a compact, connected and convex subset
of R+,

In principle the method should be valid for MIMO
systems. However due to more complicated visualisa-
tion, in this paper we proceed with the SISO case. The
problem of MIMO system identification is the subject
of work in progress.

Recall (Lakshmikantham and Trigiante, 1988) that the
solution of (1) for given initial conditions exists and
is unique for any function f, as it is built by straight-
forward iterations. This is in marking contrast to the
non-trivial character of the initial value problem for
ordinary differential equations (ODEs). There conti-
nuity is needed for existence and Lipschitz continu-
ity for uniqueness. For ordinary difference equations
(OAESs) f maybe even discontinuous, while discon-
tinuity complicates things enormously for ODEs. The
main reason is that the left-hand side (LHS) of an ODE
stands for a limiting process (&), which may fail to be
well-defined for certain f, while the LHS of an OAE
is obtained by an algebraic process of evaluating f.



It should be mentioned that model (1) is usually ob-
tained by discretisation (Kalkkuhl and Hunt, 1996) of
a deterministic non-linear (Lipschitz) continuous-time
SISO control system

= fi(x,u)
y = h(z) (2

withz € X C R™ andy € [a,b] C R, u € [¢,d] C R
and an initial condition z(tg) = xo. This, in general,
is an approximation process (Normand-Cyrot, 1987),
as the expression for the input-output map A: X x
[c,d] x R — [a,b], yielding y(t) = A(zo, u(t), 1),
is unknown. Thus the fact that discretisation with the
sampling period T assumes

VkeZ VtekT, (k+1)T)

cannot be directly used in deriving f from A. The
input-output model (1), derived from the discrete-
time state-space description (Leontaritis and Billings,
1985; Chen and Billings, 1989), is valid only locally.
Therefore it is not the ‘ultimate black-box’ and we
cannot expect any mathematically nice properties of
f, even if the underlying continuous-time model has
them.

u(t) = const

The method proposed in the paper has the advantage
of not using any a’priori knowledge about the plant.
We use self-organising structure that can match the
data distribution and according to this distribution can
produce a local linear mapping.

2. MODELLING METHODOLOGY

2.1 Function approximation using local linear mappings

In this section we would like to introduce an approach
for function approximation using artificial neural net-
work with local linear mapping. This problem was
attacked from various angles in the field of neural
networks: (Ritter, 1991; Martinetz et al., 1993; Nelles,
1996). From mathematical point of view our model
can be described as follows. Let V be a subset of
R*,V C R*and f : V — R is a function, such
that forv € V: v = (vy,...,v,) value of f(v) =
f(v1,...v,). The goal is to approximate this function
through a sum of K weighted linear functions f;(v),
ie.

f) =) (fi(v) - @i(v) ©)
i=1

and ®;(v) is a weighting function. Let us divide subset
V into k sub-subsets that satisfy condition: V = V; U
Vo U --- U Vk. Let the mapping F: V — R¥ be
defined as a collection (f1, ..., fx) of K - functions
fi: V; — R. We approximate, locally, function f in
each sub-subset V;, 7 = 1,..., K through a function

fi given by the equation
fi(v):ai'v+bi; 4

1
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Fig. 1. Architecture of neural network for local linear
approximation.

where a; denotes a slope of the hyperplane and b; is
an offset. For v € V; function f; is an n - dimensional
hyperplane, i.e., if dimV = 1, then f; is a line, if
dim V = 2, then f; is a plane etc.

2.2 Neural network architecture

Neural network with local linear mapping for function
approximation is a hybrid network consisting of K-
neurons. On the block-diagram in Figure 1 one may
see that in the first phase neurons organise themself
and build a self organising structure (Kohonen, 1995).
In the second phase, each neuron from the structure
described above, is associated with a local linear func-
tion. Three parameters are associated with each neu-
ron:

e w; - neuron’s weight that describe position of the
neuroniny C R”
e 1 - dimensional hyperplane associated with each
neuron which is described through:
- a; - aslope of the hyperplane
- b; - a offset of the hyperplane

Neurons are changing their positions i.e., their weights,
according to input vectors ». This causes that the input
dataset V C R" will be mapped into limit set of the K
neurons weights W. This can be denotedas W: V —
W where W = {w;,ws,...,wk} and w; € R
fori = 1,..., K. Each input vector v is mapped into
one of the neurons weights w;. Mapping criterion, is
that Euclidean distance between input vector », and
neuron’s weight w;, defined as d;(v,w;) = |jv —
w;||, is smaller then the distance d;(v,w;) = ||lv —
w; ||, between input vector and other neurons weights,
ie., di(v,'wi) < dj(’U,’LUj) | V] =1...K.The
neuron closest to the given vector is called a "winner
neuron”. Using such mapping some input datav € V
will be mapped into the same neuron w;. Input data
space will be divided into K subspaces, i.e. V =V, U
V> U --- U Vg, and each subspace will be mapped
through the weight (position) of the corresponding
neuron V; — w;. This technique is called vector
quantisation (Gray, 1984).



If we have distributed neurons using vector quanti-
sation technique we could associate a linear function
with each neuron. Formally we describe this below.
Let subset Y C R be an image of the subset V C R”.
Let element y € Y satisfy the equationy = f(v). If
we map subspace V; into weights of i-th neuron i.e.,
Vi — w;, then we can also map elements of the image
Y into § according to equation

Ji=a; (v—w;)+b |, %)

where: g; is an approximated value of the function
Yy = f(’U) for v € V;. The triplet w;,a; and b;,
denote winner neuron’s parameters: its weight satisfy
condition: d; (v, w;) = |[v—w;|| = mind;(v,w;)
forj=1,...,K.

2.3 Learning procedure

During learning process input-output data pairs (v, y)
are introduced to the network, where v is a learning
vector and y is an expected output. The goal of the
learning process is to minimise the error between
network output and expected output

e=y—4. (6)
We minimise this error by adjusting neuron’s param-
eters i.e. w;, a; and b;. There are many algorithms
for changing the neuron’s weights for self organising
structure, e.g. K-means algorithm (Linde et al., 1980),
Kohonen’s algorithm (Kohonen, 1995), Conscience
Winner Takes All algorithm (DeSieno, 1988). In adap-
tation of neurons weights we used winner takes most -
WTM learning rule also called "neural gas” algorithm
introduced by Martinetz and Schulten (Martinetz and
Schulten, 1991), because of a good convergence prop-
erties described by the Authors. The new neuron posi-
tion is calculated from the equation

Aw; = ehy(k(v,w))-(v—w;) i=1,....K, (7)

where: e € [0, 1] is learning rate parameter and h is a
parameter that depends on neighbourhood ranking.

As we have described it earlier, with each neuron there
is associated a hyperplane, which locally maps an
input of the network to network’s output and describes
a neuron w; response for a given input vector v.

Adjustment of the slope a; and offset b;, is performed
according to:

Aa;=¢€-(y—bi—a;-(v—w;))-(v—w;)? (8)
Abj=¢"-(y—0b;) i=1,....K. 9
where: €' i ¢" are learning rates [0, 1]. After learning

process we receive a set of K - neurons described by
3 parameters: {w;,a;, b;}.

2.4 Network validation test

Once trained, a network can be tested by introduction
of the test vector v;.s;. Trained network finds the

neuron which weight is the closest to given vector,
i.e. di(Viest,w;) = min ||vesr — wj||, and for the
winner neuron a response according to equation (10)
is calculated

Ui = @i - (Viest — w;i) + b;. (10)

Calculating response from the equation (10) can cause
discontinuity of approximation on the border of in-
fluence of neighbouring neurons. For this reason we
calculate the output of the network considering the
outputs of all neurons according to their distance to
Ves¢ from the equation

N Zfil d%ai : ('Utest - wz) + bz
y= ) 1
Zi:l ar

where: d; = ||viest — w;|| is Euclidean distance
between test vector and i-th neuron’s weights, m -
arbitrary integer.

(11)

3. APPLICATION

Neural network for nonlinear function’s approxima-
tion using local linear model has been implemented in
software written in MATLAB. In addition, for testing
the dynamic characteristics of neural network model,
SIMULINK Toolbox for MATLAB 2 has been also
used. We have applied neural network described in
previous sections for modeling a car’s speed control
system with following data set values:

e u(k) - control signal at time & - throttle angle at
time &k

e y(k) - outputsignal at time & - car’s speed at time
k

e y(k+1) - outputsignal at time k+1 - car’s speed
attimek + 1

Behavior of the model can be described by the equa-
tion

y(k +1) = f(u(k), y(k)). (12)
In this case dimension of the input data set is 2, i.e.
VY C R? and v = (u(k),y(k))T. We have used two
data sets:

(1) 733 raw data
(2) 294 pre-processed data.

Distribution of raw and pre-processed data set is not
uniform as is shown in Figure 2. Values of throttle
angle u(k) € [0.05,0.95]. Before the data sets are
introduced to the neural network controller, they were
normalised. Next the data pairs (v,y), in the form
of the input vector v = [u(k),y(k)]” and expected
output y = [y(k + 1)], are presented to the network.
The process is repeated until neural network responds
with expected value, i.e., output error is less than the
pre-assigned error. Experiments were performed for

2 MATLAB and SIMULINK are registered trademarks of The
MathWorks, Inc.
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shown in projection into input’s data space .
Network with 75 neurons learned with raw data
(top). Network with 50 neurons learned with pre-

processed data (bottom).

45,50, 55, 60, 65, 70, 75 neurons. In addition, we have
also changed the neighbourhood’s radius, by calcula-
tion of the model output according to equation (11).
Neighbourhood’s radius has the influence on weighted
function ® from equation (3). We simply apply this
variable by changing a number of neurons taken into
consideration from one to all neurons for the network.
We have tested both static and dynamic behaviour of
neural network model. Static characteristic was tested
through a presentation of test value of w - throttle’s
angle and speed for the same time sample. In this
way we have received an approximation surface for
our neural model. A cross-section for approximation
surface for throttle angle v = 0.4 is shown in Figure
3.

Dynamic characteristics of the model was tested
through throttle’s angle step function. We have simu-
lated this behaviour with SIMULINK S-function. Be-
cause of the non-linearity of the plant, both an acceler-
ation from low speed to the given speed and decelera-
tion from high speed to the same given speed has been
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Fig. 3. Cross-section of the approximation surface for
throttle angle u;, = 0.4 and neighbourhood’s
radius 25 neurons. Network with 75 neurons
learned with raw data (top). Network with 50
neurons learned with pre-processed data (bot-
tom).

tested. Thus, we have received, for each step function,
two characteristics as shown in Figure 4 respectively.
Acceleration and deceleration were investigated for
different initial speed, i.e. different ;o value. Results
for neural network with 75 neurons trained with raw
data set and for network with 50 neurons, trained with
pre-processed data, 25 neighbours and throttle’s angle
u = 0.4 accordingly, are shown in Figure 3 and 4.
Approximation error for steady-state was calculated
from equation (13), see Figure 5.

;= "4 (13)
Yj
We have evaluated the dynamical character of the
approximation via Square Error (SE) at time instant &
for given neighbourhood’s radius and throttle’s angle
u;, calculated according to equation

ejse (k) = Ily; (k) — g;(k)1*. (14)
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Fig. 4. Response of the neural network model for step
function and neighbourhood’s radius 25 neurons.
Network with 75 neurons trained with raw data
(top). Network with 50 neurons trained with pre-
processed data (bottom).

We have also calculated a Mean Square Error (MSE)
for given neighbourhood’s radius and throttle’s angle
during acceleration and deceleration in discrete time
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Fig. 5. Approximation error for neural network model
for neighbourhood’s radius 25 neurons. MSE for
different throttle angle (top). Error in steady-state
for different throttle (bottom). ‘o’ network with
75 neurons trained with raw data; '’ network

with 50 neurons learned with pre-processed data.

Table 1. Mean error in steady-state for net-
work with 75 neurons trained with raw data
and for various neighbourhood’s radius.

instants £,k + 1,. .., k + p according to equation

1 <=
= — i (k+1). 15
EMSE Pt1 ;eyw( i) (15)

MSE and error in steady-state for variable throttle’s
angle and constant neighbourhood’s radius for net-
work learned with raw data and pre-processed data are
shown in Figure 5. We have compared approximation
by network with 75 neurons, trained with raw data and
network with 50 neurons trained with pre-processed
data. We have achieved good results for neighbour-
hood’s radius from 3 to 50 neurons taken into account
by network’s output calculation. In both cases we have
achieved mean approximation’s error in steady-state
about 2% (see Table 1, 2).

Neurons no. 1 2 3 5 30 50 75
decel. [%)] 36 | 28| 2 23 | 21| 18 | 47
accel. [%] 36 |28 | 25|24 |21 | 18| 47

Table 2. Mean error in steady-state for net-

work with 50 neurons learned with pre-

processed data and for various neighbour-
hood’s radius.

Neurons no. 1 2 3 5 10 25 50
decel. [%] 27 | 23 | 2 2 23| 31| 44
accel. [%] 23 123|119 (21|23 | 21| 44

4. CONCLUSIONS

We have introduced the neural network with local lin-
ear mapping for approximation of non-linear control
system. We have achieved good results in estimation
of system’s parameters and shown, that we can use
also raw data without any pre-processing (data’s nor-



malization excluded). The drawback of raw data “ap-
proach” is that we have needed to use more neurons
for neural model. The problem of neurons number can
be omitted by using a neural network with variable
neurons number which we would like to apply in the
future work.

During our investigations we have noticed some ap-
proximation errors:

(1) steady-state error at some setpoints (values for
acceleration and deceleration may differ).

(2) slight differences in transients between plant and
neural model.

(3) over-shoot in plant trajectory as opposed to
monotonic neural trajectory for « around 0.95.

Two first errors are caused by quantisation error
and errors connected with output calculation using
weighted local linear mapping. As a result of the
quantisation problem, neural model trajectory has
changed according to neurons positions or around
them sometimes ending in different stable points, con-
sider weighting function ®. Approximation through a
weighted linear system has no high order elements
in equations as opposed to the original non-linear
system. That can cause the difference in over-shoot.
The ways to improve the approximation accuracy are
among the topics of further research.
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