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Abstract: This paper deals with the application of identification and control to an
industrial polymerisation process. The final control objective in the present process
is to obtain a polymer of a viscosity as homogeneous as possible. The process is
characterized by two key inputs : the catalyst feed rate and the air flow rate in the
reactor. The first input is the control input, and the second plays indeed the role of a
disturbance. The model identification (e.g. (Ljung, 1987) also put in evidence a drift
in the gain of the transfer function between the polymer viscosity and the catalyst
feed rate. The drift is due to the coating of the reactor with high viscosity polymer.
The identified model is used to design a predictive controller with feedforward action
of the air flow rate. The present study covers all aspects from the model structure and
parameter identification to the control design and control performance evaluation.
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1. DESCRIPTION OF THE PROCESS

The process under study is a continuous industrial
polymerisation reactor, in which polymerisation
is gradually taking place along the reactor. Reac-
tants and air flow are injected in the reactor at
high temperature. The air slips through the reac-
tant. The residence time of the air in the reactor is
significantly smaller than the residence time of the
reactants. The determination of the residence time
of the reactants is not straightforward because
of the air flow speed decreases along the reactor
due to the progressive increase of the viscosity.
However the residence time can be estimated via
signal analysis at process shut down.

The kinematic effect of the air is to push the
increasingly viscous mixture through the reac-
tor. A second effect of the air, which is almost
equivalently important, is the elimination from
the reaction medium of the byproduct released by

the polymerisation reaction. Other factors have
some influence on the dynamics of the process,
more precisely on the viscosity of the produced
polymer :

• the catalyst flow is a factor that determines
the polymer viscosity : a flow increase acti-
vates the polymerisation, which in turn in-
creases the viscosity of the polymer;

• as already explained, the air in the reactor
activates the polymerisation : an air flow rate
increase induces a better drying of the poly-
mer, this increases the degree of polymerisa-
tion of the formed macromolecules, and the
reaction mixture becomes more viscous and
remains longer in the reactor;

• a neutralizing agent is injected at the end
of the reactor to stop the polymerisation
reaction in order to prevent the continuation
of the reaction in the pipes;
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• the temperature plays an important role :
since the reaction is exothermic, an increase
of the reactant or air temperature increases
the kinetics of the reaction via the increase
of the polymer temperature.

The available data for process identification are
the polymer viscosity, the catalyst inlet flow rate
and the air flow rate. From the above consider-
ations, it is clear that the viscosity is the pro-
cess output that will be the controlled output in
the control loop. The other two variables are the
process inputs. The catalyst flow rate will be the
control and the air flow rate is a disturbance input.

Since the air compressor is not continuous but
of charge-discharge type, it plays the role of an
oscillator.

2. IDENTIFICATION OF THE PROCESS
DYNAMICS

2.1 Data sets, identification assumptions and data
pretreatment

Two experiments have been performed on the
industrial reactor. In both experiments, the regu-
lation loop was opened for some time during which
a pulse on the catalyst flow has been applied. The
data of the first experiment are presented in Fig-
ure 1. Note the effect of the pulse on the data of air
flow rate during the pulse, which emphasizes the
close connection between both flow rates inside
the reactor.

Several assumptions about the operation of the
reactor can be formulated. These result from the
experience gained in the control and operation of
the process. These basic assumptions has guided
the search for a model of the process, in the sense
that any model that would violate one of these
or give a result too far away from these would be
rejected. These basic assumptions are :

• The static gains between the catalyst flow
and the viscosity, and between the air flow
and the viscosity are both positive. Indeed an
increase of catalyst flow will result in an in-
crease of polymerisation rate and therefore of
polymer viscosity. Similarly, an increase of air
flow rate will generate a better drying of the
polymer, speed up the polymerisatiom and
therefore also increase the polymer viscosity.

• The static gain between the catalyst flow and
the polymer viscosity obtained from model
identification must be in agreement with data
coming the kinetic studies about the poly-
merisation reaction.

• The residence time obtained from model
identification must be in agreement with
mass balance calculations.

Fig. 1. Experimental dataset (pulse A). Top : air
flow rate, middle : catalyst flow rate, bottom
: viscosity

• The time delay for transfer function between
the air flow rate and the viscosity must be
smaller than the time delay between the
catalyst flow rate and the viscosity.

• The response time of the polymer viscosity
to a set point change must be lower than 4
minutes.



The data acquisition sampling period is equal to
one second : Te = 1 s. The spectrum of the 3
signals from both datasets shows that a large part
of the spectrum power is concentrated between 0
Hz and 0.05 Hz. For values larger than 0.05 Hz,
the useful information about the signal is basically
embedded in the noise. We can thus reduce the
sampling frequency to 0.1 Hz (i.e. the double of
0.5 Hz). The sampling period is now : Te = 10 s.
In order to avoid the folding up of the spectrum,
the decimation of the sampling rate by a factor
10 is preceded by a low-pass filtering of the data
until the transition frequency of 0.05 Hz.

A first secondary lobe at the frequency of 0.05 Hz
is visible on the spectra of the air flow rate and
of the viscosity. This secondary peak comes from
the air compressor, which is of the load-charge
type. The alternation of the periods of load and
discharge creates an oscillation of low amplitude
on the air flow rate at a frequency of 0.05 Hz.
This external excitation at 0.05 Hz has nothing
to do with the dynamics of the process and must
be removed before the identification by using an
appropriate filter.

Finally, before performing the identification, the
signals are scaled, i.e. their average value is sub-
tracted from the full data sample. The identifica-
tion will result in finding a linear model that is
valid around the operation point of the process.

2.2 Identification of the time delays

The method of correlations is used to estimate the
time delays between the two inputs (catalyst flow
rate, air flow rate) and the output (viscosity).

2.2.1. Time delay between the catalyst flow rate
and the viscosity We have analysed the impulse
response of the viscosity with respect to the pulse
of catalyst flow rate in open loop. The correla-
tion between both signals (Figure 2) exhibits a
maximum at time t = 3 for both data files. The
time delay is therefore most probably close to 30 s.
Validation of the estimation of the time delay has
performed via the simulation of ARX models with
polynomials A and B of order 2 with time delays
of 20, 30 and 40 s, respectively. The simulation
with a time delay of 20 and 30 s are correct while
those with a time delay of 40 s are worse.

2.2.2. Time delay between the air flow rate and
the viscosity Four correlation functions have
been calculated : on both data files for the com-
plete datasets and for the restriction to the open
loop experiment. From these datasets, the time
delay between the air flow rate and the viscosity
has been estimated at 30 seconds.
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Fig. 2. Correlation coefficients between the cata-
lyst flow rate and the product viscosity for
both experiments

2.3 SIS0 Models : identification of ARX models

Since the objective is to have a model as simple
s possible, identification has first started with
SISO (Single Input Single Output) models. One
of the goal is to determine if the catalyst is
the only factor acting on the polymer viscosity
or if it is necessary to introduce a disturbance
in the model to fully explain the variations of
the viscosity. The results of both models are
compared. The datasets are separated in two data
sets : one for identification, one for validation.
Identification has been first performed separately
on each dataset, pulse A experiment and pulse B
experiment. For the pulse A experiment, the data
used for identification are the data after the pulse;
for the pulse B experiment, the data before the
pulse have been considered for identification.

Identification is first performed with ARX (Au-
toRegressive with eXogenous input) models. ARX
models are of the following form :

A(q)y(t) = B(q)u(t) + e(t) (1)

where A(q) and B(q) are polynomials in q of order
nA and nB, respectively.
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Fig. 3. Mean Quadratic Prediction Error for pulse
A experiment identification

The identification results for models for which the
sum of the parameters nA + nB lies between 2
and 6 are summarized in Figure 3 (for pulse A
data; the results are similar for pulse B data) that
gives the mean square prediction error (MSPE)
for each model. The best model has the following
polynomials :

• Pulse A

A(q) = 1 − 1.73 (±0.3) q−1

+1.28 (±0.15) q−2 − 0.36 (±0.09) q−3

B(q) = 60.44 (±65.4) q−3

• Pulse B

A(q) = 1 − 1.67 (±0.07) q−1

+1.37 (±0.11) q−2 − 0.55 (±0.07) q−3

B(q) = 147.1 (±61) q−3

Both SISO models suffer from the same drawback
: the uncertainty on the static gain is much too
large; moreover. That’s why more data have con-
sidered for the identification, i.e. all the data from
the pulse A experiment plus the last data of the
pulse B experiment starting from the pulse. The
best resulting model has the following polynomial:

A(q) = 1− 1.66 (±0.07) q−1

+1.29 (±0.05) q−2 − 0.46 (±0.06) q−3

B(q) = 57.12 (±11.3) q−3

If the uncertainty on the static gain is now lower,
the model is still not able to reproduce correctly
the oscillations on the viscosity signal (see Figure
4). This motivated us to look for alternative
solutions, i.e. the identification of OE models, and
the identification of MISO models (with the air
flow rate as a second (disturbance) input).

Fig. 4. Validation of the ARX model (- : data, ...
: simulation)

2.4 SISO models : identification of OE models

An OE model can be written under the following
form :

y(t) =
B(q)
F (q)

u(t) + e(t) (2)

The best OE model obtained by identification
from the datasets is characterized by the following
polynomials :

F (q) = 1 − 1.194q−1 − 0.51q−2

B(q) = 196.4q−3 − 226.6q−4 + 142.1q−5

However it appeared that the OE model was not
able either to correctly handle the oscillations
observed in the polymer viscosity data.

2.5 MIS0 Models

The identification of MISO models appears to be
necessary to handle these oscillations. The ARX
model is now written as follows :

A(q)y(t) = Bcata(q)ucata(t)

+Bair(q)uair(t) + e(t) (3)

We have followed for the identification the same
procedure than hereabove. The best MISO model
has the following polynomials :

A(q) = 1 − 0.81 (±0.04) q−1 (4)

Bcata(q) = 105 (±15) q−3 (5)

Bair(q) = 0.51 (±0.15) q−3 (6)

The performance of the identified model have
largely improved, although they are still far from
being perfect, as it can be seen from Figure
5 which compares the data with the simulated
model for the pulse B experiment. We have also



Fig. 5. Validation of the MISO model (straight
line : data, dotted line : validation)

been able to evaluate the respective importance
of both inputs from the identified model : the
polymer viscosity dynamics is influenced at 66%
by the catalyst flow rate and at 33% by the
air flow rate. This justifies to design a controller
that includes feedforward action for compensating
the influence of the air flow rate on the polymer
viscosity dynamics.

3. CONTROL OF THE POLYMERISATION
PROCESS

The final objective of this work was to design
a controller. The identified model serves as a
basis for the controller design. As we have already
mentioned, the polymer viscosity, the catalyst
flow rate and the air flow rate are the controlled
output, the control input and the disturbance
input. From the above study, it appears obvious
that the controller

• should include a feedforward action to com-
pensate the influence of the disturbance in-
put;

• should be adaptive in order to handle phe-
nomena like the drift observed in the poly-
mer viscosity in the last part of the pulse B
experiment, as well as possibly the process
nonlinearities that have not been included in
the linear identified model.

3.1 Design of the feedforward controller

The design of the controller with feedforward ac-
tion has considered the IMC structure, as shown
in Figure 6, which has been compared to a PI
regulator. In the comparison, two different pa-
rameter of the PI have been considered : the
Ziegler-Nichols settings, and a calibration aimed
at minimizing the closed-loop settling time. The

proportional gain and the integration constant are
equal to :

Ziegler−Nichols : Kp = 2.7 10−3, τi = 73.5

Min. Settling Time : Kp = 2 10−3, τi = 60
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Fig. 6. IMC structure with feedforward action

The performance of both controllers (IMC, PI)
have been compared in different conditions :

(1) tracking (step change of the set point);
(2) regulation (disturbance rejection)

for the nominal model but also in presence of
model uncertainties (to test the robustness of
the controller in presence of process dynamics
that differs from the nominal one given by the
linear identified model). In that case, two different
models have been considered for the dynamics
between the catalyst flow rate and the product
viscosity, i.e. :

G1(q) =
120q−3

1− 0.85q−1
(7)

G2(q) =
90

1− 0.77q−1
(8)

This corresponds to a deviation of 15 % for the
gain and of 5 % for the time constant. The static
gains and the settling times in open loop for the
nominal model, G1 and G2 are equal to 545, 750,
375, and 170 s, 200 s and 140 s, respectively.
Table 1 synthetises the results obtained with the
three controllers (IMC, PI (Ziegler-Nichols (ZN)),
PI (Minimum Settling Time (MST))) and the
three models in tracking conditions. It compiles
the values of the settling time in closed loop, the
values of the IAE (Integral of the Absolute value
of the Error) and ITAE (Integral of the Time-
weighted Absolute Error) criteria (e.g. (Seborg et
al., 1989)), and the values of overshoot in all cases.

Figures 7 and 8 show the performances of the IMC
with and without feedforward action (Figure 7)
and of both PI regulators with feedforward action
(Figure 8), when a ramp of air flow rate is applied
to the process (straight line at the bottom in both
figures).



Model Control. CLST IAE ITAE OS
(s) (%)

IMC 30 150 300 0
Gnom(q) PI (ZN) 190 264 1381 5

PI (MST) 90 274 1179 0

IMC 80 191 585 20
G1(q) PI (ZN) 170 326 1719 24

PI (MST) 130 269 1133 14

IMC 150 216 939 0
G2(q) PI (ZN) 180 400 3050 0

PI (MST) 180 398 3059 0

Table 1. Controllers’ performance in
tracking conditions (CLST = Closed

loop settling time; OS = overshoot)

Fig. 7. IMC with (straight line) and without
(dotted line) feedforward action

Fig. 8. ZN (dotted line) and MST (straight line)
PI regulators with feedforward action

Note that in all cases, the IMC performs better
and that the introduction of the feedforward ac-
tion is largely justified by the improvement of the
closed loop performance.

3.2 Design of the adaptive controller

The final important improvement that has been
tested in the incorporation of a parameter adapta-
tion in the controller structure in order to handle
the drift observed in the product viscosity signals
after the open loop response to air flow rate steps.

Fig. 9. adaptive (straight line) vs non-adaptive
(dotted line) controllers (straight line at the
bottom : simulated drift)

For the purpose of the control design and perfor-
mance evaluation, the drift has been modelled by
considering a linearly time dependent gain in the
transfer function between the air flow rate and
the product viscosity. The adaptive controller is
indeed the IMC previously designed where the
gain between air flow rate and product viscosity
is estimated on-line by a recursive least squares
estimation algorithm. Figure 9 compares the per-
formance of the adaptive and non-adaptive ver-
sions of the IMC controller. Note the improvement
gained with the adaptive controller.

4. CONCLUSIONS

In this paper, we have presented the application of
model identification and control to an industrial
polymerisation reactor. The identification study
has resulted in the selection of a MISO model
between the outputs (product viscosity) and the
two inputs (catalyst flow rate, air flow rate).
The identified model has served as a basis for
the design and evaluation of the performance of
an adaptive IMC controller whose performance
proved to be superior to those of PI and non-
adaptive IMC controllers.
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