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Abstract: For a behavioral firm model there suggested closed-loop controls, using the
so-called behavior t ypes (normal, altruistic, and aggressiwe ones), and leading the firm
state to a stable Pareto optimal state. The existence of initial states that necessarily
require using the abnormal (altruistic and aggressive) behavior types, is proved. The
problem of reaching the Pareto optimal set with minimal time of abnormal behaviors

is solved.
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1. INTRODUCTION

In this paper the authors deal with a behavioral
firm model described in (de V ries,1999). This
model is based on ideas of behavioral theory of
the firm developed in (Cyert and March, 1963).
An important feature of this theory is introducing
the aspiration levels (Simon, 1987) for criteria of
departments. According to (de V ries,1999), the
firm is considered as a system, consisting of three
departments: the Production Department (PRD),
the Sales Department (SLD), and the Central
Management Department (CMD). Each depart-
ment has its own objective. Control v ariables are
unit price p, chosen by the CMD, and slack of
the PRD z. These two variables are considered as
parameters characterizing a state of the system.

F. P. de Vries has developed some decision rules
for adjusting the values of p and x so that the
system reaches a stable state. At the same time,
the suggested decision rules sometimes lead the
system to stable states, which are not Pareto (see,
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for example, (Karlin, 1959)) optimal with respect
to the mentioned objectives of all departments.
Therefore it is essential to consider new possi-
bilities for the system to reach the stable Pareto
optimal state from any initial state.

These possibilities are implemented in this paper
through the different so-called behavior types for
eac h departmert, in accordance with (Kleimenov,
1997; Kleimenov and Kryazhimskii, 1998). F our
different behavior types for each department can
be considered, in general:normal, altruistic (with
respect to another department), aggr essive (with
respect to another department), and paradozial
(with respect to itself). In this paper three behav-
ior types are used: normal, altruistic, and aggres-
sive ones. As a result, the existence of initial states
of the system that require using the abnormal
(altruistic or aggressive) behavior types, is shown.
The problem of reaching the P aretooptimal set
with minimal time of abnormal behavior is solved.

2. BEHAVIORAL MODEL OF THE FIRM

In this section elements of the behavioral firm
model are presented, according to (de Vries, 1999).



The state of the firm is defined by a pair of
variables (p, ), where p > 0 is the unit price, and
x > 0 is the level of slack of the PRD (which
is ‘on-the-job-leisure’ by (de Vries, 1999)). The
dynamics of the firm state is described by the
system of differential equations

P =vY(p)u,
{ i = £(@), )

where ¢(p) and £(x) are differentiable functions,
satisfying the conditions: ¢(p) > 0, £(z) > 0 for
p>0, x>0 and ¢¥(0) =0, £0) = 0. Controls u
and v are restricted: |u| <1, |v| < 1.

Each department of the firm has its own objective,
which depends on values of variables p and z, and
on positive parameters 6, a, 7, 4.

The PRD'’s interest is that the unit cost, which is
calculated as

w0 = (L +n)ara @

is as close as possible to its aspired level, denoted
by é. Thus, the criterion of the PRD is

L(p,x) = |c(p, x) — €. 3)

It is assumed that the sales volume always is equal
to the volume of demands of consumers and is
defined by

w(p) = —- (4)

The SLD’s interest is that the sales is as close
as possible to its aspired level, denoted by w.
Therefore, the criterion of the SLD is defined by

Ly(p) = |w(p) —wl. (3)

Finally, the CMD’s interest is that the firm’s
profit, which is calculated by

m(p,x) = (p — c(p, z))w(p), (6)

is as close as possible to its aspired level, denoted
by 7. This implies the formula for the criterion of
the CMD:

In(pa Z’) = |7r(p, Z’) - 77F| (7)

The purpose of each department is to minimize
his own criterion.

The decision rules u(p,z) and v(p, x), considered
in (de Vries, 1999), generate certain dynamics of
the system (1). But for this dynamics one can find
initial states such that trajectories, beginning at
them, are attracted to stable states, which are not
Pareto optimal with respect to the criteria (3), (5),
and (7).

Therefore, the following important problem arises
here: given the parameters of the model, describe
a set of Pareto optimal states.

3. CONSTRUCTING THE SET OF PARETO
OPTIMAL STATES

In this section a description of the set of Pareto
optimal states with respect to the criteria I.(p, x)
(3), I:(p,x) (5), and I, (p) (7), is given.

To this end consider the following three lines
on the plane (p,z). At points of these lines the
criteria (3), (5), and (7) reach the minimal values,
equal to zero. I.e. these lines consist of points,
which are the best ones for the PRD, the CMD,
and the SLD, respectively.

Solving the equation I.(p,z) = 0, one can obtain
the formula of the following curve:

c

=2 1 8
e (8)

r = fi(p)

Analogously, from the equation I (p,z) = 0, one
can found the formula for the following curve:

_pta T
bp>+n  ab

—1 9)

z = 7(p)

Finally, the criterion I, (p) gets its minimal value
at points of the vertical line:

P=9Q=4]—=. (10)

These three lines are drawn on Fig. 1.

A P=¢

Fig. 1. Lines « = ji(p), x = v(p), and p = ¢

In further analysis it will be considered the case
when the inequality

cr <

(11)

=]

is fulfilled. The complete analysis of all possi-
ble cases for parameters ¢, 7, w can be found in
(Kleimenov and Semenishchev, 2001).

Under the inequality (11) the curves z = o(p)
and x = fi(p) have two different common points,
denoted by A;(pi,z1) (the left point) and by
As(pa,x2) (the right one). Denote by M the
intersection point of the lines z = fi(p) and p = P,



and by N the intersection point of the lines x =
7(p) and p = @ (see Fig. 1).

Let wy = 1%’ and wy = z%’ where p; and p»
1 2

are abscissas of the points A; and A,, respectively.
It can be proved that w; > ws. The domain
situated between lines x = fi(p) and = = v(p),
where p; < p < po, will be denoted by D.

The set of Pareto optimal points with respect to
the criteria (3), (5) and (7) depends on the values
of aspiration levels é,7,w; it will be denoted by
P(é,7t,w).

Theorem 1. Let the inequality @ > wy (or w <
ws) be fulfilled, and aspiration levels ¢, 7 satisfy
the inequality (11). Then the set P(¢, 7, w) is the
closed curvilinear triangle A M N (the triangle
As M N, respectively).

This theorem was proved in (Kleimenov and
Semenishchev, 2001). The curvilinear triangle
A1 M N is drawn on Fig. 1.

Now let us analyze the remaining case, when the
following inequalities hold:

we < W < wy (12)

Consider an auxiliary curve v, whose paramet-
ric equation is given in (Kleimenov and Se-
menishchev, 2001). The curve 7 consists of all
pairs of the points (p!,z!) and (p”,z"), p" > p,
such that value of the function ¢(p,z) (2) (and
7(p, ) (6), and I,,(p) (5) also) at the point (p!, z')
equals to its value at the point (p",z").

Under the inequalities (12) the vertical line p = @
is strictly between points A; and As. Consider two
following sets.

The part of domain D, situated to the left from
the line p = ¢ and above the curve v, will be
denoted by Dr. The part of domain D, situated
to the right from the vertical line p = ¢ and below
the curve v, will be denoted by Dg. Sets Dy, and
Dpg, are depicted on Fig. 2.

pP=¢

Fig. 2. Sets Dy, and Dpg

For any w, satisfying the inequalities (12), at
least one of domains Dy ,Dpg is non-empty. If

both these sets are non-empty, they have a single
common point, which is the intersection point of
the vertical line p = ¢ and the curve 7.

Theorem 2. Let the inequalities (12) be fulfilled,
and aspiration levels ¢, 7 satisfy the inequality
(11). Then the set P(¢,#,w) is the union of the
sets Dy, and Dg.

Remark 3. Under the inequality (11) at least one
of the points A;, As is Pareto optimal one. If,
besides that, the equality @ = 232 ig fulfilled,
then both points A; and As are Pareto optimal.

4. CONSTRUCTING THE OPTIMAL
CONTROL

Remind that the case, when the inequality (11)
holds, is considered only.

Now consider the problem:how to construct deci-
sion rules for the PRD and the CMD such that a
trajectory of the system, beginning at any initial
state, attains the set P(é,7,w) and is stabilized
at some its point.

Firstly, try to solve the problem when each de-
partment chooses its control variable in order to
minimize its own criterion. Such a behavior of a
department will be called a normal one.

Now let us define in detail the normal behavior
for the PRD and the CMD.

4.1 Normal behavior of the Production Department

In (de Vries, 1999) there was given the following
formula for the control v = v(p, ) in (1):

17 c(p7 m) < 67
_]-7 C(p, 1‘) > 67 (13)
0, otherwise.

v(p, ) =

So, the PRD updates the slack = to decrease
the value of the criterion I.(p,z). Note that this
decision rule is valid under fixed value of the price
p, otherwise the result is unpredictable.

This rule is oriented to the minimization of the
PRD’s criterion. According to (Kleimenov, 1997;
Kleimenov and Kryazhimskii, 1998) we say in this
situation about normal behavior of the PRD. And
the control law, defined by (13), will be called a
normal type control law of the PRD, and will be
denoted by v™"(p, z). By definition of the function
x = ji(p), one can write

V" (p,7) = sgn(i(p) — 7). (14)



4.2 Normal behavior of the Central Management
Department

The normal behavior of the CMD is more compli-
cated then the PRD’s one. The reason is that the
curve x = v(p), which is ‘ideal’ line for the CMD,
is not monotonic, as for the PRD (see Fig. 1).

The CMD can change the variable p. Obviously,
if the current state (p,z) is to the left from the
line z = v(p) (for example, at the point A), it is
necessary to increase the value of the variable p in
order to approach this line (see Fig. 3).

T

Fig. 3. Normal behavior of the CMD

Analogously, if the current state (p,z) is to the
right from the line z = 7(p) (for example, at
the point B), it is necessary to decrease the
value of the variable p. The following question
arises: what to do when the current state (p,x)
is below the curve = ¥(p) (points C and E)
or above it (points F' and G, for example). To
answer this question, consider the curve, which
is a geometric locus of the maximal points of
the curves x = r(p) for different values of the
aspiration level 7. As it was proved in (Kleimenov
and Semenishchev, 2001), this curve is a straight
line and its equation is x = I(p) = %p —1.

The line z = I(p) intersects with the graph of
the function = = P(p) at two points: at the point
(0,—1), and at the point T'(pr,z7), which is the
maximal point of this graph. The abscissa of the

; ion 97 _
point T' can be found from equation o = 0.

Beginning at the points, being below the graph
of the function = 7(p) (like points C' and E),
a motion should be directed away from the line
x = I(p), then the criterion I (p,z) will decrease
monotonically (provided that z is fixed).

Analogously, beginning at the points F' and G,
which are above the curve & = #(p), a motion
should be directed to the line = I(p).

The normal behavior of the CMD is illustrated on
Fig. 3. According to this, the normal type control
u""(p,x) takes the values 1, —1 in the domains
just described, and the value 0 at points of the
curve x = (p).

4.3 The normal dynamics of the state of the firm

Consider the system (1), assuming that both the
CMD and the PRD employ the normal behavior, i.
e. choose the controls u = u™"(p, z), v = v (p, z).
Besides that, for the simplicity, assume that the
function £(x) equals to constant r for z > 0, and
£(0) = 0. Analogously, let ¢(p) = ¢ for p > 0, and
¥(0) =0.

Then, in the interior of the positive quadrant
of the plane (p,z) the system (1) will get the
following form:

p=qu"(p,z),
{ & =ro""(p,x). (15)

This system has discontinuous right-hand side. Its
solutions are understood in sense of (Filippov,
1988). The phase portrait of the system (15)
is shown on Fig. 4 (parameters ¢ and r are
approximately equal there).

z=0(p)

Fig. 4. Normal dynamics of the firm’s state

The vector field, defined by the system (15), is
piecewise constant. The positive quadrant of the
plane (p,z) is divided into several domains, for
each of which the right-hand side of the system is
a constant vector, as it is shown on Fig. 4. Under
some conditions on parameters of the system the
trajectories are attracted to one of the points A
or A,. Now the following problem is formulated:

Problem 4. Find conditions on parameters of the
system such that all trajectories of the system
(15), beginning at any initial state, are attracted
to a stable Pareto optimal point.

In (Kleimenov and Semenishchev, 2001) this prob-
lem has been considered under the inequality (11)
and the assumption that A, € P(é, 7, w). Note
that, accordingly to the Remark 3, the point A;
in this case can either be Pareto optimal one or
not. It is proved that there are only two kinds of
the conditions, solving Problem 4:

1. (i) The point A, is on the curve z = ¥(p) to
the left from the point T and



(ii) both the points A; and A, are Pareto
optimal ones.

2. The point A; coincides with the point T and
As € P(¢, 7, W).

Accordingly to Remark 3, (ii) is fulfilled if and
only if @ = %4%2 Ap analytical form of (i) is
quite complicated and will not be given here.

So, for almost all values of the parameters ¢,
7, and @ the using of normal behavior only is
insufficient to provide the considered system to
attain a stable Pareto optimal point from any
initial point. The possible way out is to introduce
abnormal (altruistic and aggressive) behavior.

4.4 Optimal control through abnormal behavior
Introduce here abnormal behavior types of the
PRD and the CMD.

Besides the normal behavior, the CMD can em-
ploy the following four variants of using the altru-
istic and aggressive behavior types:

u®  Altruism with respect to the PRD.

PRD
Under this variant the CMD does minimize
the criterion I.(p,x). This implies that the
CMD changes the value of p in such a way
that the current point approaches the curve
z = u(p).-
usd, Aggression with respect to the PRD.

Under this variant the CMD does maximize
the criterion I.(p,x). This implies that the
CMD updates the variable p in order to move
away from the curve z = fi(p).
u? _ Altruism with respect to the SLD.
Under this variant the CMD does minimize
the criterion I,,(p,z). This implies that the
CMD changes the value of p in such a way
that the current point approaches the line
P =9
Aggression with respect to the SLD.
Under this variant the CMD does maximize
the criterion I, (p, ), i. e. updates the vari-
able p in order to move away from the vertical
line p = ¢.

ag
UsLp

So, the CMD has five different behavior variants,
including the normal behavior one. For each of
these variants one can find the corresponding
control function of the variables p, z. Consider the
set of these functions:

U = {u" (p,2), ufnp, (p, ), ut (0, ),

ul L (p, ), u ,(p,z)}

(16)
Now describe abnormal behavior types for the
PRD. Since the PRD controls the variable z, it
has no influence on the SLD, therefore it has only
two abnormal behavior variants.

v

(%

al , Altruism with respect to the CMD.
It means that the PRD does minimize the
criterion I (p, ). This implies that the PRD
tries to move the current state (p,z) to the
curve x = ¥(p).

It means that the PRD does maximize the
criterion I (p, ). This implies that the PRD
tries to move the current state (p,x) away
from the curve x = v(p).

ag
CMD

Different behavior variants of the PRD are real-
ized by control functions of the variable p, z. The
set of these functions is

V = {0"(p,x), 0805 (0, 2), 08, (9, 7).} (17)

Consider a problem of optimal control for the
system (1) under the restrictions u € U, v € V.

Definition 5. A pair (u(p, ), v(p, z)) will be called
an admissible control for the system (1), if

1. u(p,z) € U, v(p,z) € V for all p >0, z > 0;

2. a trajectory of the system (1), generated
by controls u = u(p,z), v = v(p,x) and
beginning at any initial state (po, o), attains
a stable Pareto optimal point.

Trajectories of the system (1), generated by ad-
missible control, will be called admissible ones.
If for an initial state an admissible trajectory
includes a part that is generated by abnormal
control of at least one department, then such part
of the trajectory will be called abnormal one.
Denote by T (po, zo;u(-,-),v(-,-)) the time of
using abnormal behavior by at least one depart-
ment along the trajectory, beginning at the initial
state (po, o), and generated by admissible control
(u(p,z),v(p,z)). Due to quite simple structure of
the trajectories, the abnormal time can be calcu-
lated by geometrical and analytical means.

The following problem of minimizing the time of
using the abnormal behavior is formulated.

Problem 6. Find an admissible control (u*(:, "),
v*(+,+)) minimizing the functional T*"" (py, xo;
u(+,+),v(+,-)) for all initial points (po,xo) of the
positive quadrant of the plane (p, x):

T (po, 2o u” (-, ), 07 (-, ) =
. Tabnr sxosu(s, ), v(s, -
woyemn T (po, 2o u(, ), v, )

The solution of Problem 6 is called an optimal
control.

An optimal control has been constructed in form
of synthesis, and is shown on Fig. 5. Correspond-
ing trajectories are drawn with dash lines. Note



Fig. 5. Structure of the optimal control

that, besides the rectilinear parts of trajectories,
there exist the parts of sliding mode on curves

z = fi(p), r = (p).

In several domains (Sy, S2, S5 —S7) the optimal
control of each department is the normal type
control. In some domains the departments should
employ altruism (in S5 the optimal control is vg =
(us _,v"")), and aggression (in Sy the optimal

SLD? p
H — a ag
control is vy = (u%, ,,vehp))-
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