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Abstract: Market-based optimization is a  new optimization method for large
decentralized systems where the distributed resource allocation of an economic system is
adopted. Market-based algorithms can  be interpreted  as multi-agent scenarios where
producer and consumer agents both compete and cooperate on a market of specified
commodities. The market-based approach is applied to the synchronization of a set of
local multiple-model systems. The method is extended to the case where each of the
subsystems is represented by  a Takagi-Sugeno (TS) fuzzy system. Although all local
systems are provided with  the same control input, the behaviors of  the  local systems
are, in general, different because of different parameters in the subsystems. The task of
the market-based optimization is to find an appropriate composition of subsystems so that
all local systems exhibit a similar dynamical behavior. Examples show that even  systems
with  unstable subsystems can be synchronized if there exists a stable combination of
weighted subsystems. Copyright © 2002 IFAC
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1. INTRODUCTION

Centralized optimization and control of systems
becomes difficult if they  are composed of a large
number of complex local systems. Therefore,
decentralized methods like multi-agent control are
able to  handle optimization tasks better. An
important application  for agent based control is the
optimization of  manufacturing processes and the
synchronization of production lines, respectively.
Dimensioning and planning of manufacturing
systems by multi agent methods is described in
(Fleury, et al.1996). In (Zaremba et al.,1999) a
distributed resource allocation method for a repetitive
manufacturing process based on the concept of
critical resources (i.e. system bottlenecks) is
described. (Wallace, 1998) deals with the flow
control of mobile platforms in a manufacturing plant
using intelligent agents. Another important field of
application for multi agent optimization and control
is congestion control in traffic networks (Lei and
Özgüner, 1999, Altmann et al., 1999). Other
decentral control strategies are the so-called “utility
approach“ (Gold, 2000 ) and the “behavioral
approach“ (Large, et al., 1999) used for mobile robot
navigation. In (Barret and Lafortune, 1999) a
behavioral control strategy dealing with
communicating decentralized controllers is
presented. One of the most interesting and, in our
opinion, promising approaches to large decentralized

systems is the market-based optimization. Market-
based algorithms imitate the behavior of economic
systems in which producer and consumer agents both
compete and cooperate on a market of commodities.
This simultaneous cooperation and competition of
agents is also called “coopetition“ (Teredesai and
Ramesh, 1998). General ideas and some results of
market-based control strategies are  presented in
(Clearwater, 1996, Guenther, 1997). In (Voos and
Litz, 1999) a more detailed description of the
optimization algorithm is presented. The authors
show how to optimize distributed systems by so-
called producer and consumer agents using local cost
functions. Given desired setpoints and, with this, a
cost function for each local system a set of controls
is to find that  leads the whole set of local systems to
a so-called Pareto-optimum ( http, 2001). The present
paper adopts many ideas from (Guenther, 1997) and
(Voos and Litz, 1999), but it deals with a  different
goal of optimization namely with the synchronization
of the behavior of local systems. The market-based
approach is applied to a set of  decoupled local
systems each of them being  composed of  a
weighted sum of  linear multiple-model subsystems,
or Takagi-Sugeno (TS) fuzzy subsystems,
respectively. In general, TS fuzzy systems are
nonlinear subsystems that are composed of  local
dynamical systems each of  which being weighted by
a certain membership degree depending on the  state
and control input of the system (Palm, 1997). While
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each local system is provided with  the same control
input, the behaviors of  the individual local systems
are, in general, different because of different
parameters in the subsystems. It is assumed to be
feasible to change the behaviors of the local systems
by tuning the weights for the regarding subsystems.
The task of the market-based optimization is, by
tuning those weights,  to find  a composition of
subsystems so that the behavior of all local systems is
synchronized. The paper is organized as follows.
Section 2 gives an introduction into the market-based
optimization method used in this paper. Section 3
deals with a restricted communication between
agents. In Section 4  the market-based algorithm is
applied to the synchronization of a set of local
systems each of  them being composed of  linear
subsystems, and nonlinear TS fuzzy subsystems,
respectively. The subsystems are composed in such a
way  that the dynamical behavior of  the local
systems are synchronized. Section 5 gives
corresponding simulation results. Section 6
concludes with a summarizing discussion about the
methods presented and an  outlook on future work.

        2. MARKET-BASED OPTIMIZATION

The imitation of  market control mechanisms of an
economic system and the application to technical or
communication systems requires the modeling of
both the system to be optimized and the optimization
strategy itself. In the following, system and
optimization strategy are presented as continuous
models although the computational realization is
usually discrete. Let a system S  be composed by a

set of  M  local systems  iS  described by differential

equations
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The restriction to a constant matrix B  is done for the
sake of simplification. Note, however, that the
method presented here can also be extended to local

iB matrices.  The task  is to change the weights

 j
iw so that all local systems exhibit a similar

dynamical behavior on the condition of minimum
local energies. This in turn leads, provided a common
control vector u, to the synchronization of the
behavior of the local systems.  One possible option

for tuning the j
iw  is to find a global optimum over

all local systems and their subsystems. This,
however, is a difficult task especially in the presence
of many local systems.

Therefore a multi-agent approach has been preferred.

The determination of the weights  j
iw is done by

producer-consumer agent pairs in a market-based
scenario that is presented in the following.

Assume that to every local system iS  belongs a set

of N producer agents j
iPag  and  N consumer agents

j
iCag . Producer and consumer agents sell and buy,

respectively,  the weights j
iw  on the basis of

common prices jp . Producer agents j
iPag  supply

weights p
j

iw and try to maximize specific local profit

functions j
iρ  where “local“ means “belonging to

system iS “. On the other hand, consumer agents
j

iCag  buy weights c
j

iw  from the producer agents

and try to maximize specific local utility functions
j

iU . The whole “economy“ is in equilibrium as the

sum over all supplied weights p
j

iw is equal to the

sum over all utilized  weights c
j

iw .
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As we will see later, the dependence of the weights

on prices jp  in (2) makes a computation of the

prices jp , and the final weights j
iw  possible.

The trade between the producer and consumer agents
is based on the definition of  cost functions for each
type of agent. Therefore we define a local utility

function for the consumer agent j
iCag

  Utility = benefit  -  expenditure
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i cb  and a  local profit function for

the producer agent j
iPag
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where 0, >j
i

j
i eg  are free parameters that

determine the average price level.  Observe here that

both cost functions (3) and (4) use the price jp  on

the basis of which the weights j
iw  are calculated.

Assume further that, according to (1), we can
formulate a local energy function to be minimized
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How to combine the local energy function (5) and the
utility function (3) , and how are the parameters

j
i

j
i cb ~,

~
in (3) to be chosen?  An intuitive choice
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guarantees  0≥j
iw . It can also be shown that near

the equilibrium 0=ix& , and for 1=jp , the energy

function (5) reaches its minimum, and  the utility
function (3)  its maximum, respectively.  With (6) the
utility function (3) becomes
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Maximization of (7)  yields
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Maximization of  the local profit function (4) yields
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The requirement for an equilibrium between the sums

of the “produced“ p
j

iw and the  “demanded“ c
j

iw

leads to the balance equation
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Substituting (9) and (11) into (12) gives the

prices jp  for p
j

iw  ‘s
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Substituting (13) into (9) yields the final weights j
iw

to be implemented in each local system. Once the

new weights j
iw are calculated, each of them has to

be normalized with respect to  ∑
=

N
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j
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3. MARKET-BASED ALGORITHMS WITH A
   RESTRICTED NUMBER OF CONNECTIONS
                      BETWEEN AGENTS

In the previous sections the basis for the interaction
of the individual agents was a common (global) price
built by all agents at the same time. Every system
was connected with the other  (see Fig. 1).

Fig. 1. Connections between all systems (agents) via
      a common (global) price

In real systems this may be not feasible. Therefore a
restricted communication between agents can only be
realized. Fig. 2 shows a  graph for a  restricted chain
structure.

Fig. 2. Connections between neighboring systems
           (agents) via local prices

Then equation  (13) changes into
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Simulations showed that the results with the local
price approach differ only marginally from those
with a common (global) price.

4. MARKET-BASED OPTIMIZATION OF
       LINEAR SYSTEMS AND TS FUZZY
                           SYSTEMS

4.1. Linear subsystems

In the following the local system (1) is specified as a
convex combination of N linear local systems
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With (16), (13), and (9) new weights j
iw  are

calculated at every time step, and each local system

(14) is updated. Since every local  system iS  tries to

optimize its own performance the dynamical

behaviors of the local systems iS  become more and

more adjusted.

4.2. Nonlinear TS fuzzy subsystems
In  the previous section the multiple-model
subsystems to be mixed within every local system

iS  were linear. In the following,  the subsystems are

nonlinear TS fuzzy functions the system matrices of

which depending on the local state ix .

Given a set of M parallel local systems each of them
being composed of N  TS fuzzy subsystems

           BuxxAwx
N

j
ii

j
i

j
ii += ∑

=1

)(& (17)

where   i=1,...,M,

∑∑

∑

=

×

=

××

=

=≥ℜ∈=≥

ℜ∈ℜ∈=

RN

  ,   ,  , 

  ,    

11

1

10;10

,;)(

r
riri

nn
r

j
i

j

j
i

j
i

mnnnj
ir

j
i

R

r
iri

j
i

Aww

BAAxA

µµ

µ

The further development is the same as before. The
only difference are the additional fuzzy parameters

)( iri xµ depending on ix .
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5. SIMULATION RESULTS

Example 1:
The first example deals with 3 local systems with two
linear subsystems each of second order.

;)5.15.8()5.55.1(

;)5.75.1()5.45.2(

;)28()5(

3
2
1

1
33

2
1

1
33

2
2
1

1
22

2
1

1
22

1
2
1

1
11

2
1

1
11

uxwwxwwx

uxwwxwwx

uxwwxwwx

++−+−=

++−+−=

+⋅+−+−=

&&&

&&&

&&&

(19)

The market based parameters are 100;1 == j
i

j
i ge .

The initial weights  are 0;1 21 == kk ww (k=1,2,3).

The u values are with N=1000  (k – simulation step,
N – maximum number of steps)
if k<N/4 u=5;
if k>=N/4 & k<N/2 u=0;
if k>=N/2 & k<3*N/4 u=5;
if k>=3*N/4 u=0;
(see Fig 3a,b)

Fig 3a  Stable linear subsystems, no optimization
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Fig 3b Stable linear subsystems,  with optimization 

The simulation shows clearly a synchronization of all
local systems after the optimization.
The range of system parameters of each system
(system 1, 2, or 3) represented by the system
parameters of each subsystem (system 11 and 12,
system 21 and 22, or system 31 and 32) have to have
a range in common so that a common dynamic
behavior may become feasible.

Example 2:
The following example deals with 3 local systems
each of them composed of  two subsystems of second
order. Moreover, each subsystem is a nonlinear TS
fuzzy system composed of two linear sub-subsystems
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i=1,2;  j=0,1;  k=1,...,3.
Figure 4 shows the the corresponding membership
functions. This example deals with a combination of
systems in which the 3rd system exhibits a slight
oscillation tendency. Figs. 5a,b show the behavior of
the systems without and with optimization,
respectively,  from the market-based algorithm.  The

initial weights  are 5.0=i
kw . The corresponding

parameters are
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Fig. 4  Membership functions lkµ , l = 0,1

In both cases a  negative step u= -3  was introduced.
It can be noted that the market-based optimization
leads to an “alignment“ of the three systems.

Fig. 5a Stable fuzzy subsystems,  no optimization

Fig. 5b Stable fuzzy subsystems, with optimization

Example 3:
This example deals with  3 systems composed of
two TS fuzzy subsystems. The initial weights  are

5.0=i
kw . The system parameters have been chosen

so that system 1 is unstable
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Figs 6a,b show the results for a negative step
function  u= -3 . The optimization, however, leads to
a stable behavior of all three systems although slight
oscillations could not be avoided.
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Fig. 6a Unstable fuzzy subsystems included,
            no optimization

Fig. 6b Unstable fuzzy subsystems included,
            with optimization

                   6. CONCLUSIONS

Market-based optimization has been shown to be a
powerful optimization strategy for decentralized
systems in which producer and consumer agents both
compete and cooperate on a market of commodities
using a global price. A decentralized system is
composed of a set of local systems each of which
consisting of a convex combination of linear systems,
or Takagi-Sugeno (TS) fuzzy subsystems,
respectively. For given local energy functions a
combination of  local subsystems  is  to find so that  a
synchronization of the dynamical behavior of the
local systems is provided.  The simulation results
show that a  Pareto-optimal solution  for every local
system can be reached. One condition for the
existence of such an optimum is that in every local
system a stable combination of subsystems  exists.
The approach has been applied both for an
unrestricted communication between agents (global
price) and a restricted communi-cation  (local prices).
Simulation results show that this approach is
successful for combinations of linear, and nonlinear
TS fuzzy subsystems, respectively. Future work will
be directed to the decentralized control design of TS
fuzzy systems in the framework of market-based
optimization and  its enhancement with learning
strategies.
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