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Abstract: This paper addresses the control of robotic manipulators using the velocity field
approach. Instead of the usual specification in motion robot control via desired position
trajectories depending on time, the specification in the velocity field control formulation is
given through a desired velocity vector field as a function of actual position regardless of time.
This approach is useful for control following task. This paper presents two controllers to solve
the velocity field control formulation in task space. Experiments using these controllers on a
two degrees–of–freedom direct–drive arm illustrate the feasibility of the proposed approach.
Copyright © 2002 IFAC
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1. INTRODUCTION

In the absence of friction and other disturbances, the
dynamics of a serial n-link robot can be written as
(Spong and Vidyasagar, 1989):

M
�
q � q̈ � C

�
q � q̇ � q̇ � g

�
q ��� τ (1)

where q is the n � 1 vector of joint displacements, q̇
is the n � 1 vector of joint velocities, τ is the n � 1
vector of torque inputs, M

�
q � is the n � n symmetric

positive definite manipulator inertia matrix, C
�
q � q̇ � q̇

is the n � 1 vector of centripetal and Coriolis torques,
and g

�
q � is the n � 1 vector of gravitational torques

due to gravity.

A natural appealing to describe most robot manipu-
lators activities is in task space where position and
orientation of the robot end–effector are of concern.
Denoting by h

�
q � : IRn � IRm the robot direct kine-

1 Work partially supported by CONACyT grant 32613–A and SNI,
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matics, then the position and orientation x � IRm of the
end–effector is given by

x � h
�
q �
	 (2)

The time derivative of the direct kinematic model (2)
yields the differential kinematic model

ẋ � d
dt

h
�
q ��� ∂h

∂q
q̇ � J

�
q � q̇ (3)

where J
�
q � is the so–called analytical Jacobian matrix

(Canudas et al., 1996).

The second order kinematics can be obtained by fur-
ther differentiation, i.e.,

ẍ � J
�
q � q̈ � J̇

�
q � q̇ 	 (4)

Assuming that the analytical Jacobian J
�
q � is full–

rank, thus J
�
q � J � q � T is nonsingular (Canudas et al.,

1996), and the Jacobian pseudoinverse solution corre-
sponding to (4) is
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q̈ � J
�
q � † � ẍ � J̇

�
q � q̇ � � (5)

where the pseudoinverse is given be

J
�
q � † � J

�
q � T � J � q � J � q � T ��� 1 	

The specification of tasks to be executed by manipu-
lators is usually given in terms of desired position tra-
jectories in task space xd

�
t � . The motion control aim

(trajectory tracking) is to achieve asymptotic tracking
of the desired position trajectory, that is

lim
t � ∞

� xd

�
t ��� x

�
t ��� � 0 	

Contour control of a robot arm is an act of the end–
effector tip being moved along a path with an assigned
velocity (Nakamura et al., 2000). Contour control is
one important goal for machining operations since
contouring accuracy is crucial for a precise motion
system. Several approaches to improve the contour-
ing accuracy are surveyed in (Chiu, 1998; Li, 1999).
Figure 1 depicts the contouring error, which measures
the shortest distance between the current end–effector
position x and some point in the contour, and the track-
ing error, which is the deviation between the current
position x and the desired location specified by the
timed trajectory xd at the current time.

Velocity field control has been recently introduced by
Li and Horowitz (1999), which attempts to be an al-
ternative to motion control. In this control philosophy,
the task to be accomplished by the robot is coded by
means of a smooth desired velocity vector field defined
in the task configuration space � and denoted as a map

v
�
x � : � � T �

x 	� v
�
x �

where Tx � is the tangent space of � at the specific
configuration x and T � ��
 x �� Tx � denotes the tan-
gent bundle of � .

A velocity field defines a tangent vector (the desired
end–effector velocity ẋd) at every point of the robot
task configuration space. Figure 2 illustrates the spec-
ification of motion by means of a velocity field. This
Figure depicts a velocity field defined in the task space
of a two degrees of freedom robot arm which assigns
a desired velocity vector (arrow) to each point in the
task space. The flow lines shown in Figure 2 indicate
that they converge to a given circular contour.

Although the idea of motion specification independent
of time for a robotic task seems at first sight illog-
ical, in many application the timing of the desired
trajectory is unimportant compared to the coordination
and synchronization requirements between the various
degrees of freedom. In this way, velocity field control
approach is particularly well suited to contour follow-
ing tasks for machining operations such as cutting,
milling and deburring (Li, 1999).

The velocity field control objective revolves around
the computation of the joint torques τ required to

Fig. 1. Tracking and contouring errors

Fig. 2. Desired velocity field in Cartesian space

vanish the velocity field error defined as the difference
between the desired velocity field v

�
x � and the manip-

ulator end–effector velocity ẋ, that is

lim
t � ∞ � v

�
x
�
t � ��� ẋ

�
t ��� � 0 	 (6)

In this situation the desired velocity field v
�
x � is de-

fined so that if the velocity ẋ of the output matches
the velocity field v

�
x � , that is ẋ � v

�
x � , then the robot

output is guided towards the desired contour. In this
sense we say that the desired velocity field encodes
the robot task. Thus, instead of requiring the arm end–
efector tip to be at specific location at each instant
time as it is imposed in trajectory tracking control, in
velocity field control the arm tip will match with the
flow lines of the desired velocity field, as it can be seen
in Figure 2.

The contribution of this paper is twofold. First, we
present two control laws to solve the velocity field
control formulation without regard of closed–loop
passivity requirements. The first controller is based
on inverse dynamics whereas the second uses a two–
loops control structure involving a joint velocity inner
loop better adapted to the kinematic control concept.
Second, we have conducted experimental studies on
a two degrees–of–freedom direct–drive arm. There,
contour control is illustrated through requesting the



task of tracing a circle with constant tangent speed in
task space.

2. VELOCITY FIELD CONTROL

2.1 Inverse dynamics controller

In order to achieve velocity field control in task space
(6) we exploit the inverse dynamic control structure
given by

τ � M
�
q � u0 � C

�
q � q̇ � q̇ � g

�
q � (7)

which transforms the robot dynamics (1) into the
linear system

q̈ � u0 	 (8)

A new control input u0 can be chosen by the second-
order differential kinematics equation (4). According
to the pseudoinverse solution (5), the input

u0 � J
�
q � † � ∂v

�
x �

∂x
ẋ � Kv � v

�
x ��� ẋ�

� Kpξ � J̇
�
q � q̇� (9)

ξ
�
t � �

t�
0
� v
�
x
�
σ � ��� ẋ

�
σ ��� dσ (10)

with Kp and Kv symmetric positive definite matrices,
leads to the following closed–loop equation

ξ̈ � Kvξ̇ � Kpξ � 0 	

This is a lineal system which is globally asymptoti-
cally stable. Hence we get the conclusion limt � ∞ ξ

�
t � �

limt � ∞ ξ̇
�
t � � 0 which implies from (10):

lim
t � ∞ � v

�
x
�
t � � � ẋ

�
t ��� � 0

as desired.

2.2 Two–loops based controller

One more solution to velocity field control in task
space can be extracted from ideas reported in (Kelly
et al., 1999) which are closely related to the concept
of kinematic control.

Under the optics of kinematic control, the joint ve-
locity q̇ can be seen as the robot input. Considering
this situation and assuming that the analytical robot
Jacobian J

�
q � is full–rank and bounded, we propose

the following control law to generate the desired joint
velocity q̇d

q̇d � J
�
q � † � v

�
x � � Kξ � (11)

where ξ is given by equation (10) and K is a symmet-
ric positive definite matrix. Under the assumption of

exact velocity tracking, i.e., q̇
�
t ��� q̇d

�
t � , and substi-

tuting (11) into (3) we get

d
dt

ξ � � Kξ

and therefore limt � ∞ ξ
�
t ��� 0 and limt � ∞ ξ̇

�
t ��� 0 as

desired.

However, in practice most joint velocity controllers
assure —in the best case— only asymptotic velocity
tracking instead of exact tracking. One simple ex-
ample of asymptotic joint velocity controller can be
easily derived from the inverse dynamics approach

τ � M
�
q � � q̈d � Kv ˙̃q � Kpz � � C

�
q � q̇ � q̇ � g

�
q �

(12)

ż � ˙̃q (13)

with Kp and Kv symmetric positive definite matrices.
This control scheme requires the desired joint acceler-
ation q̈d

�
t � which is obtained through (11) as

q̈d � J
�
q � † � ∂v

�
x �

∂x
ẋ � K � v

�
x ��� ẋ ���

� � d
dt

J
�
q � † � � v � x � � Kξ � 	 (14)

In this way a two–loops control scheme is obtained
which is expected to drive the velocity field error
to zero. To prove this claim, notice that after some
manipulations the overall closed–loop system is given
by

d
dt �� z

˙̃q
ξ

�	
� �� 0 I 0

� Kp � Kv 0
0 0 � K

�	 �� z
˙̃q
ξ

�	
� �� 0

0
J
�
q � ˙̃q

�	
	 (15)

Observe that the state variables z and ˙̃q are inde-
pendent of ξ . Indeed, the z and ˙̃q dynamics is char-
acterized by a lineal asymptotically stable system;
therefore limt � ∞ ˙̃q

�
t � � 0. In this way, ˙̃q vanishes ex-

ponentially, the same as the term J
�
q � ˙̃q because the

boundedness assumption on the Jacobian. Hence the
total system is globally convergent which allows the
conclusion

lim
t � ∞

ξ̇
�
t � � lim

t � ∞ � v
�
x
�
t � ��� ẋ

�
t ��� � 0 	

3. EXPERIMENTAL RESULTS

The experiments presented in this section have been
accomplished on a mechanical arm built at CICESE
Research Center. This is a direct–drive vertical arm
with two degrees–of–freedom whose rigid links are



Fig. 3. Experimental robot arm
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Fig. 4. Vector field used in experiments

joined with revolute joints (see Figure 3). For a com-
plete description and model of the set–up, the reader
is refered to (Reyes and Kelly, 1997; Reyes and
Kelly, 2001).

Experiments showed that static, Coulomb, and viscous
friction at the motor joints are present and they depend
in a complex manner on the joint position and velocity.
Instead of modeling static and Coulomb friction for
compensation purposes, we have decided to consider
them as unmodeled dynamics and only viscous fric-
tion was compensated.

The control algorithms were written in C program-
ming language executed in the control board at a 2.5
msec. sampling rate.

3.1 Desired velocity field

The specified velocity field v
�
x � should be chosen to

exhibit a behavior without abrupt changes in velocity
and acceleration such that saturation on actuators is
prevented. The proposed velocity field v

�
x � “draws” a

circle in the x1–x2 plane as shown in Figure 4 where
the corresponding desired speed at each point is ap-
proximately 0.1 [m/sec]. The circle center coordinates

are xc1=0.318 [m] and xc2=0.318 [m]. The control aim
is to drive the arm in such a way that the position of
the arm tip follows the velocity field, hence to track
asymptotically a circle.

We have conducted two experiments corresponding to
the inverse dynamics based controller (7), (9) and (10),
and two loops based controller (10)–(13), respectively.

Since tracking position error has nonsense in veloc-
ity field control, we have recurred to the contouring
error to assess the performance of the velocity field
controllers. The contouring error is defined as (Chiu
and Tomizuka, 2001)

eC

�
t � � r0

��� � xc1 � x1

�
t ��� 2 � � xc2 � x2

�
t ��� 2 	

The arm initial configuration was at position x
�
0 � T �

� 0 	 636 0 � T [m].

3.2 Inverse dynamics controller

The first experiment was carried out with the inverse
dynamics controller described by equations (7), (9)
and (10). The following gains Kp and Kv were used

Kp � diag � 2000 � 2000 � �Nm � rad � �
Kv � diag � 20 � 20 � �Nm seg � rad � 	

The contouring error eC is shown in Figure 5. There
are observed peaks in steady state of 0.004 [m], that
is a 2 % with respect to the circle radius. Figure 6
shows the path of the robot tip in the x1–x2 plane
while Figure 7 depicts the evolution of the tip speed�

ẋ
�
. Good performance is observed from Figure 6,

however a little deformation is observed in the circle
traced by the robot which is due to Coulomb friction
present at the arm joints. Figure 7 shows that

�
ẋ
�

has
high frequency components which may be due to the
simple method based on the Euler approximation to
estimate joint velocity q̇. By increasing the gains Kp

and Kv, experiments demonstrate behavior improve-
ment but high frequency components still appear on�

ẋ
�

and applied torques τ . Observe that smooth mo-
tion transient was presented, and the accomplishment
of velocity field control objective allowed to attain the
task of tracing a circle with constant speed in a natural
fashion.

3.3 Two–loops based controller

The second experiment was conducted with the two–
loops controller given by (10)–(13) with the following
gains



Fig. 5. Contouring error using inverse dynamics based
controller

Fig. 6. Path of the arm tip using inverse dynamics
based controller

Fig. 7. Speed
�
ẋ
�

using inverse dynamics based con-
troller

Kp � diag � 250 � 250 � �Nm � rad � �
Kv � diag � 30 � 30 � �Nm seg � rad � �
K � diag � 25 � 25 � � 1 � sec � 	

The experimental results are presented in Figures 8,
9 and 10. In Figure 8 is shown the time history of
the contouring error eC, which describes maximum
peaks in steady state of 0.004 [m], a 2 % with respect
to the circle radius. The path of the arm tip in the
plane x1–x2 is depicted in Figure 9. The final circle
traced by the arm tip presents slight deformations
compared with the previous experiment (see Figure 6),
but enhancement can be obtained by choosing higher
gains. The time evolution of the tip speed

�
ẋ
�

shown in
Figure 10 has also high frequency components mainly
due to velocity estimation and Coulomb friction. As
in the test of the inverse dynamic based controller,
smooth motion trasient was presented.

Fig. 8. Contouring error using two–loops based con-
troller

Fig. 9. Path of the arm tip using two–loops based
controller

Fig. 10. Speed
�
ẋ
�

using two–loops based controller

4. CONCLUSIONS

Velocity field control appears as an attractive alterna-
tive to control of manipulators when motion coordina-
tion among the robot axes is of concern. The desired
motion of the manipulator is coded into a velocity
field instead of the familiar description as trajectories
depending on time. Two velocity field controllers have
been proposed. In the experiments on a two degrees–
of–freedom direct–drive arm presented, good perfor-
mance in the contouring error and arm tip speed was
observed without important difference between the
two tested controllers. Coordinated motion was veri-
fied in the velocity field control approach.
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