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Abstract: The paper is focused on the optimal control problem with boundary
conditions. Unlike the traditional class of piecewise continuous functions, here the
admissible controls are defined as continuously differentiable functions with inclusion
or amplitude constraints. Admissible variations of control functions are formed using
the idea of simultaneous varying. Numerical solution algorithm, obtained as a result,
is proved to be convergent to the necessary condition of optimality.
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1. INTRODUCTION

The mathematical theory of optimal processes
emerged as an answer to the requirement of solv-
ing engineering problems, and the applicability
of this theory depends naturally on algorithms
for solving the problems of optimal control. In
general formulation, a problem of optimal control
is aimed at determining the optimal value of an
objective functional defined on the profiles of a
system of ordinary differential equations subject
to given initial conditions. The right-hand end-
point could be either free or could satisfy some
constraints. This paper deals with the problem of
optimal control where the ODE system is subject
to given boundary conditions, which is substan-
tially more complex than the problem with initial
conditions and includes the latter as a special case.
Aside from its importance for pure mathematics,
the control problem with boundary conditions
has numerous applications, for example, in the
problem of choice of optimal compositions for
the protections against nuclear radiation (see Fe-
dorenko, 1978, p.268), in the problem of optimiza-
tion of manufacturing cycles (see Fedorenko, 1978,
p-263), in the problem of synthesis of stratified
structures under the effect of various waves and
temperature factors (Gusev, 1993), etc.

The control problem with boundary conditions
has been investigated by the author together with
K.Mizukami. At first, there was obtained a nec-

essary condition for optimality of the maximum
principle type, which also provided the back-
ground for the development of solution techniques
(Vasilieva and Mizukami, 1994). Then, this line
of research was continued by the authors (2000)
when the differential maximum principle has been
justified and the idea of combined control varia-
tion has been introduced. In parallel, the theory of
singular controls has been also proposed (Vasilieva
and Mizukami, 1997). Having analyzed various
resolved problems of the mentioned type it can
be concluded that in many cases the extension of
the class of admissible controls from continuous
to piecewise continuous is stipulated by the desire
to take into account the amplitude constraints for
control functions.

The objective of this paper is to develop the
optimality condition and optimization technique
for a control problem with boundary conditions
whose class of admissible controls contains smooth
(i.e., continuously differentiable upto any order)
functions with inclusion or amplitude constraints.
The investigation technique remains the same as
before. Namely, the increment of the objective
functional together with conjugate BVP is being
considered on a certain type of control variation,
thus providing the admissibility of varied con-
trol under some adjustments of the parameters
of variation. In contrast to the classic variation
of Lagrange and the needle-shaped variation of
McShane it is proposed to use the idea of so-



called “inner” or “interior” variation expressed as
far back as by M.V.Ostrogradskii and presented
in contemporary form, e.g., by Zabello (1990).
This idea consists in the simultaneous varying of
independent variable and control function. Under
such approach, the dominant term of the incre-
ment formula determines the necessary condition
for optimality, and the formula itself serves as a
basis for the development of optimization algo-
rithm which converges to the necessary conditions
of optimality.

2. STATEMENT OF THE PROBLEM

Let a controllable process

{u,z} ={u = u(t), ut) e R™;
z=a(t), z(t) R, te T = [to, ]}

be defined by the conditions

J(u) =g (x(to), w(tl))+/F(:1:, u,t)dt—min, (1)
T

T = f(ma/uﬁt): <p(m(t0),:1:(t1)) = 07 (2)

u(’) € U. (3)

Here the controls u = u(t), t € T are smooth and
bounded: u(-) €C *(T), ¢= 1,2,.... Vector-
functions f = (f1,..., fn), © = (¢1,..-,¢n) and
scalar functions ¢, F' are continuous with respect
to their arguments together with their partial
derivatives upto any order ¢ for which all the
operations described below are valid. In-addition,
it is supposed that for any smooth and bounded
admissible control v = wu(t), t € T, boundary
value problem (2) is solvable in the class of smooth
and bounded functions = z(u,t), t € T.

Finally, two types of controls constraints ¢/ will be
considered:

U=U =4 ()eC, (T): u(t)eU,teT, (4)
U&® ™ — compact, intU #§ ;
U=U=Ui N{u("): ¢ u,u) <0,
g{up @) = \Pg{u,u), p>0, (5)
A=\ (1) >0,teT,i= 1,2,...,0}.

3. INCREMENT FORMULA

For two admissible processes, the basic one
{u,z = z(t,u)} and the varied one {& = u +
Au,Z = x + Ax = z(t,4)}, the formula for the
increment of the functional (1) has been obtained
(Vasilieva and Mizukami, 1994). The same work
also provides an estimate of the state x caused by

an increment of the control u. Taking into account
the smoothness of u, the increment of (1) can be
represented in the following form:

o __ OH (¢, x,u,t)
(@) — J(w) T/ <7,Au(t)> dt

ou
+ / o(lAu()]) dt, (6)
T
where
o(a) 0, a—=0
[0

Moreover, it should be noted that there exists
som& = const > 0 such that

lo(lAu(@®)) | < K [[Aut)l?, teT. (7)

Here, H(¢7 T,u, t) = W’(t); f(m7 u, t))_f(m) u, t)7
[| {|is the vector s norm and (- ,-) stands for in-
ner product in finite-dimensional Euclidean spaces
R™ and R™. The conjugate vectorfunction =
P (t), ¥ (t) € R™ is a solution profile of the bound-
ary value problem

Ty — 8H(/¢7w7uat)
—Boy(to) +B 1%(t1) 9)
Ovo Opo
T Bogate) T B oa) =0
where By and B; are some numetieal ( )

matrices which are chosen arbitrarily in order to
satisfy the condition

Prime here denotes the transpose of the matrix. It
was demonstrated (Vasilieva and Mizukami, 1994)
that if the direct BVP (2) is solvable for some
admissible process {u,x = x(t,u)} then linear
conjugate problem (8)-(10) is also solvable with
respect th = P(t,u).

4. CHOICE OF ADMISSIBLE VARIATION

In Section 2 it was proposed to consider two
different sets of admissible controls. Now, it is
worth to give descriptions of admissible control
variations suitable for both (4) and ( ).

4.1 Inclusion Constraints

Let w € U; according to (4). Then the varied
control % = u can be chosen as

uc(t) = u(t +€d(t)), e€[0,1], (11)



where § = §(t) is a smooth real function which
satisfies

to—t<dt)<t—t;, teT. (12)
Proposition  If the basic control u = wu(t) is
admissible in the sense that w € U, i.e. satisfies
(4), then the varied control & = wu. defined by
(11) is also admissible for all € € [0, 1] and for any
smooth real function §(t) satisfying (12).

Apparently, by denoting

te=t+ed(t)eT, e€l0,1]

it is concluded that u.= wu (t.) €U due to the
fact that w is admissible for all ¢ € T. It is also
obvious that u. — u, t € T when £ — 0 since

Acu(t) = u (1) —u(t) = eu(t)d(t) +o(e), (13)

8()=(01(€),. - -, om (), im® _o = 1. m.

e—=0 €

4.2 Homgeneous and Inclusion Constraints

Let u € Uy according to ( ). In this case ad-
ditional homogeneous constraints will complicate
the structure of admissible variation.

Proposition 2 If the basic control u = wu(t) is
admissible in the sense that u € Us, i.e. satisfies
(5), then the varied control 4 = wu. defined by
(11) is also admissible for all € € [0, 1] and for any
smooth real function §(t) which satisfies (12) and

‘S(t)‘ <1, teT. (14)

In fact, if u(t) €U andg; u(t),u(t)) < 0, i=

1,...,1, then by virtue of Proposition 1 u.(t) €
U, t €T, € € [0,1]. Moreover, under homogeneity
conditioy; uA u) = Ng(u,uw), i= 1,...,1
with respect to @, it holds for t. =t +ed(t) € T
that

9i (ue (1), (1) =g <u<ts>= (14 ét0) gf)

_ (1 te S(t))pgi (u(tg), %) <0,
i=1,... 1.

since 1 4¢ §(t) > 0 for all € € [0,1] due to (14).
Rentpit.  The homogenggitighofespect
to u is stipulated by the method of formation of

admissible variation. Homogeneous constrains are
not a rare exception. For instance,

> a(ut) uP(t) <0, teT, p>0
=1

makes an example of widely used homogeneous
constraint.

It is known that in order to use the successive
approximation technique based on the maximum
principle (Vasilieva and Mizukami, 1994, 2000)
the inclusion constraints u(t) €U  should be
rather simple because this technique relies on the
supposition of solvability of the maximum con-
dition. In other words, the method of successive
approximations requires to solve problems of non-
linear programming with respect to U and for all
t € T at every iteration. This part of the technique
can be excluded when admissible controls are of
the form (4) or5( ) and the variation is chosen
according to (11), (12) and (14). In fact, it is
sufftient to find only one basic admissible control,
since the varied control w. will always remain
within the class of admissible controls.

5. OPTIMAONDITIONS

Increment formula (6) serves as a basis to obtain
optimality conditions for the problem (1)-(3) with
control constraints (4)-(5). Replacement of @ in
(6) by admissible variation (11) results in

J(u.) — J(u) = —e / W (w, )6(2) dt + o(c), (15)
€ €[0,1],

where for u € U;, u € Y and variation (11)

W (u,t) = <W,u(n>. (16)

Formula (15) is valid for all e € [0,1] and for all
d = 6(t) which satisfy the conditions (12) or (12),
(14) for control constraints (4) or{ ) respectively.
It is also obvious that for the remainder term o(e)
in variation (11), (13) it is fulfilled that

[o(e) || <K&

Theoreml. Suppose that u* = wu*(¢) is opti-
mal control in problem (1)-(3) and that x* =
x*(t), 9" = 9¥*(t) are the correspondent profiles
of direct BVP (2) and conjugate BVP (8)-(10).
Then under control constraints (4), 6 )

W(u*t)=0, teT. (17)

The proof of Theorem 1 is almost immediate and
arises out of the increment formula (15) consid-
ered for any admissible 6(¢) which has different
signs.

Rentuf Theorem 1 states that the optimality
condition in the class of smooth and bounded



controls is defined directly by the problem entries
and their derivatives (see formulae (16), (17)).
When the class of admissible controls is extended
from smooth to piecewise continuous functions
(so that w(t) is not defined for all ¢ € T),
the optimality condition for bounded controls
obtained in (Vasilieva and Mizukami, 1994) is to
be written as

OH(y", x5
< ou

t),'u—u*> <0 VweU

and almost for all ¢ € T. This condition is
obviously less useful for numerical calculations
than (17) because of the presence of undefined
parameter v.

Remlnf  Necessary condition for optimality (17)
holds trivially within subsegments T, C T', mesT
> 0, where u*(t) = 0 i.e., u*(t) = const.

6. OPTIMIZATION ALGORITHMS

Variation of the type (11) is often referred to as
“inner” or “interior” variation due to the following
feature. If a given control function is adjusted by
means of such variation, the resulting function
remains within the limits of control domain. In
order to use interior variations in practice, it is of
great utility to point out an appropriate way to
choose the function 4(¢).

Lemnta  Conditions (12) are fulfilled for

s = 6=
oW =0l = Ty @ L g
M > maxa(?)],

where a = a(t), t € T is some arbitrary smooth
real function. Moreover,

8(to) = 8(t1) = 0. (19)

Proof. A mere glance reveals that condition (19)
holds. Therefficuttgito note that 01 (t) has
the same sign as a(t). Therefore, if a(t) > 0 then
to —t S 61(t), and if a(t) S 0 then 61(t) S t1 —t.
It remains to show that

(a) if a(t) > 0 then 6;(t) < t1 —t;

(b) if a(t) < 0 then tg — t < 64(t).

Item (a) holds due to
(t - tO)(tl — t) (tl _ tO)(tl _ t)
M(t1 — to) a(t) < Mt — o) a(t)<t1 —t

since GWI@— <1landt—tyg <ty —tyg. On the other
hand, item (b) holds due to
(t —to)(t1 — 1) (to —t)(t1 — 1)

M(t1 — to) alt)= M(ty — to) la(t)|>t0 —t

since %[ <landt;—t <t;—tg, to—t <0. O

Lemma 2 Conditions (12), (14), (19) are fulfilled
for
t—to)(t1 — 1)

a(t), (20)

>
M > max|a(t)],

L= rgleaTx{(tl +to — 2t) a(t) 1 (21)
+ (t—to)(tr —t)a(t)} Mt =)’

where a = a(t), t € T is some arbitrary smooth
real function.

Proof. First, it is easy to check that (20) satisfies
the conditions of Lemma 1. Moreover, it can be
noted that

=gl

?

where 61 (t) is defined by (18). Then, having cal-
culated the derivative of d2(t), it is obtained that

b1 (t)

— T | <1.
5@
r&a%(‘ 1()

‘52(t)| =

This entirely proves all the statements of Lemma
2.0

It should be noted that the choice of d1(t), d2(t)
according to (18), (20)—(21) will establish non-
negativity of the dominant term of the increment
in (15) for a(t) = W(u,t). This allows to intro-
duce two nonnegative ffnctionals — u), j= 1,2.
Each functional is determined by the correspond-
ing control constraints (4) orJ ) respectively:

;Mmszm@&ma (22)

where §; () is defined by (18) for a(t) = W (u,t);

ia(s) = / Wwt) b()dt  (23)
T

where d2(t) is defined by (20) for a(t) = W(u,t).
Then, for admissible variation (13), the following
formula is correct for both types of control con-
straints (4) and ( ):

J(u) — J(u) = —epfu) +o(e), (24)
plw) >0, =12

where by virtue of estimate (7)

lo(e) | < Ke?, K = const > 0. (25)



Theorem 2. Let u* = w*(t) be optimal control
in problem (1)-(3) with one type of control con-
straints (4) or§ ),i.e., w € U;, j= 1,2. Then, for
corresponding 7, it holds that

ww) =0, j=12 (26)

The result of Theorem 2 is proved by the incre-
ment formula (24).

Numerical algorithms for problem (1)-(3) have
the same structure for both types of control con-
straints (4) and ( ). Both algorithms are designed
to be convergent to the necessary conditions for
optimality (26). This implies that a numerical so-
lution u*=*u (t) will not be necessarily optimal
but always extremal control.

Let an admissible control w* € U;, j €
{1,2}, k= 0 be given. It should be emphasized
that u* = w*(t) must not contain constant sec-
tions, i.e., uk(t) # const, t € Ty, mes Ty > 0 (see
Remark 3). Then one should integrate numerically
the direct BVP (2) and conjugate BVP (8)-(10)
and store their profiles z* = x(t,u*), ¥* =
P (t,uk). After that, for j € {1,2} subject to (4)
orf ), the correspopfling ~ u*) > 0 must be cal-
culated using formulae (22) or (23) respectively.
If i; u*) = 0, then by virtue of Theorem 1, the
control function u*=Fu (t) is a possible solution
of the problem (1)-(3) and thus the algorithm is
depleted. Otherwise, it is supposed that

pi(w®) >0, je{1,2} (27)
Next stage of the solution process is dedicated
to construction of the control variation. First
step in this direction is to define smooth real
function 41 (¢) or d2(t) according to (18) or (20)-
(21) for a(t) = W(u* t) and then to construct
one-parameter family of admissible controls uf =
uk(t), t € T, ¢ € [0,1] using formula (11):
uf € U;, j € {1,2}. Second step is to solve the
problem of one-parameter minimization

g = argsrerhi)r,ll]J(u?) (28)

and then to determine next approximation as

utt(t) = ul, (1),

k kE=0,1,2,.... (29)
Theorem 8 Suppose that J(u) in the problem
(1)-(3) is bounded from below for both types of
control constraints (4) and( ). Then the sequence
of admissible controls {#} generated by the algo-
rithm (27)-(29) is a strictly relaxational one, i.e.,
J(ubt) < J(u¥), k= 0,1,2,... and conver-
gent to the necessary condition of optimality (26)
in the sense that

lim p; (u*) =0, je€{1,2}. (30)

k—o00

Proof. To begin with, the increment formula (24)
should be examined for u % w+u . taking
into account the e§timate (2 ):

J (uf) — J (u¥) < —e pf uk) + K2

By virtue of inequality (27), strict relaxation for
small € > 0 becomes obvious. Hence, taking into
consideration the minimization problem (28)

J(*) — J(u¥) < —e pf u®) + K2, (31)

ee0,1], je{1,2}

Inequality (31) can be transformed into

0 <epj(uf) < J(wh) — J(ub) + K2 (32)

Due to the relaxation and boundedness of J(u)
from below

0< J(ur) — J(uh') 50, k- oco.

Then passing to the limit in (32)
0<e [ lim g uk)] < Ke?,
k—o0

e€l0,1), je{1,2}.

Last inequality is valid only if (30) holds. O

Reminy.  The choice of §(t) according to formu-
lae (18), (20)—(21) will obviously narrow down the
possibilities of variation since in that case d1(tg) =
01(t1) = 0 even though it is not required by the
general form of § = §(t) provided by (12) where
d(tp) > 0 and 6(¢1) < 0. In order to extend the
possibilities of variation, function 6(¢) satisfying
(12) can be chosen as some arbitrary real function
which carry the same sign as W (u, t). Such choice
will also guarantee non-negativity of the dominant
term of the increment (15). On the other hand,
the choice of §(t) by formulae (18), (20)—(21) is
fully justified if U/ includes additional conditions,
ad modum u(ty) = u°, u(t;) = u!, which have
frequent occurrence in many practical problems
simulating various dynamic processes (see Gusev,
1993).

The following example illustrates the application
of the solution procedure described above.

Enmple. Consider a simplified version of the
problem (1)-(3):

{i}l = I, 1'1(0) = ].,
To = I +u(t), 1'2(1) =0,
J(u)=[322(0) 4 2.16]° + [1021 (1) — 5.8]> — min,
u(t) €U ={u(-) €C'(T): [u[<1,u(0)=—1,u(1)=1},

teT =1]0,1],



where £ = (21,22) € R2, t € T and the control
function is scalar u(t) = wu(t). In this particu-
lar example, optimal control is u*(t) = (2t —
1)?, with the correspondent states z;(1,u*) =
0.58, z5(0,u*) = —0.72 providing that J(u*) =
0, W(u*,t) = 0. It should be noted that optimal
control u*(t) = (2t — 1) is also singular in the
sense of the maximum principle if the end-points
of admissible controls are left free (Vasilieva and
Mizukami, 1997).

In order to perform an iteration of the optimiza-
tion algorithm it is convenient to define analyti-
cally several useful quantities. First, in this exam-
ple

H(%,x,u,t) = Y122 + ham1 + au(t).

There isficully to determine the conjugate
BVP according to (8)-(10)

{1@1 = —thy, (1) = —20[10z,(1)— 5.8],
o = —th1, 12(0) = 6[322(0) + 2.16].

whose boundary conditions depend on the miss-
ing end-points of the state system. These end-
points can be obtained using the matrix repre-
sentation of the solution of linear BVP (Vasilieva
and Mizukami, 1994):

z1(1,u) = 0.65—0.32{[0/1& u(t) dt_o/let u(t) dt-|J ,

1 1
22(0, 1) = —0.76—0.12 /etu(t) dt—0.88 /e’tu(t) dt
0 0

Thus, function (16) turns into
W (u,t) = P2 (t)a(t),

where

Ya(t,u) =0.3242(0) [0.37€" +2.72e77]
—0.32¢,(1) [et —e7t].

Let the initial approximation be given by u°(t) =
—2t%2 + 4t — 1. Under this control z;(1,u%) =
0.42, x5(0,u%) = —0.96 and J(u®) = 3.08. Func-
tion & = §°(t) is defined by (18) for a(t) =
W (u®,t) < 0. For manual illustrative computa-
tions the function §° can be simplified as follows:

ft)=t*-t<0, teT=10,1].

Then by virtue of (11)
ul(t) =2 [t+e6° (0] "+4 [t+e6° (] 1, £€[0,1]

and for e = 1 it is obtained that u'(t) = —2¢# +
4t? — 1, z1(1,ut) = 0.61, z2(0,u') = —0.84, and
J(u!) =0.22 < J(u®) = 3.08.
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-1

0.5 1
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Fig. 1. Smooth control functions, Example 1.

Figure 1 shows the control functions. Here u°(t) is
given by dashed line, dotted line stands for u'(t),
and u*(t) is drawn using thick solid line. On the
sixth iteration of the computer implementation,
u®(t) coincides with u*(t) within the limits of
given precision of computations.
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