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FAULT DETECTION MODELS AND METHODS FOR
A MULTI-TANK HYDRAULIC CONTROL PROBLEM

D. N. Shields
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Abstract: two observer-based fault detection designs are considered for detecting
a fault in any inaccessible tank which forms part of a larger n-tank system. A
subsystem of n — 2 tanks is situated in a hazardous environment and only control
and measurements of the outer tanks is possible. Given a set of nonlinear differ-
ential equations, several transformations are derived to aid the design of the two
problems of control and fault detection. Two nonlinear observer approaches are
given and illustrated by an example. Stability and detectability are examined.
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1.INTRODUCTION

Fault detection and isolation for hydraulic sys-
tems has been investigated by using several meth-
ods including : observers (Koinig et al., 1997),
parity equations with neuro-fuzzy identification
(Garcia et al., 1997), residuals from physical non-
linear equations (Koscielny et al., 1994), estima-
tion of physical parameters with use of fuzzy neu-
ral networks (Han and Frank, 1997), fuzzy model
based on B-Spline networks (Benkheda and Pat-
ton, 1997) and transformations to connoical form
observers (Isidori, 1995). However, new methods,
both algebraic and geometric in nature, have yet
to be assessed properly on real systems. Certain
types of system are such that the differential equa-
tions expressing the system contain nonlinearities
in the form of a repeating nonlinear term. For hy-
draulic systems this usually is a flow term which is
not all that smooth. This paper takes a closer look
at such a real system consisting of n tanks where
the n — 2 inner tanks are inaccessible. First sev-
eral models are given which can be used for solv-
ing a control problem with limited (sensor) out-
puts and for fault diagnosis. Use of inverse mod-

els can avoid theoretical existence problems. An
important result on input-output cononical forms
is given from which a nonlinear observer can be
designed to generate a residual for detecting a spe-
cific tank fault. The analysis here can be applied
to other hydraulic systems (Shields et al., 2001a,
Yu and Shields,1996).

2. APPLICATION PROBLEM

The problem considered is that of a n-tank hy-
draulic control system consisting of n tanks ( tank
1 to tank n) connected serially with each other by
cylindrical pipes. Here, the n — 2 inner tanks and
connecting pipes are situated in a hazardous envi-
ronment and measurements of the tank levels are
not available. Control is only possible via fluid
inputs (u1,us) to tank 1 and tank n. Also, only
the output levels of these two tanks (y(1),y(2))are
available for feedback control and fault detection.
The flow, ();,i+1, between tank ¢ and tank ¢ + 1
satisfies a Toricelli law,

Qiit1 = @i i419(%i — Tig1); (1)



where z; is the fluid level in 1,

9(s) = sgn(s) - Vs, (2)

and where coefficient a; ;11 depends upon gravity,
and on the flow correction term and on the cross-
sectional area of the connecting pipe from tank i to
tank i+1 (i = 1,.,m). Tank n has an outflow pipe
such that the flow is given by Q, = anng(zn).
This system is described by n differential equa-
tions (Model 1):

Ty =u; + 61

—a1,29(z1 — 22) (3)
Ty = a1 29(®1 — ®2) — az39(x2 — x3) + ko f (4)
73 =as39(T2 — x3) — aza9(x3 — z4) + k3 f (5)

Zi=ai—1,i19(Tim1 — i) — Qiiv19(T; — Tig1)

+kif (i=2,..,n—1) (6)
m.n = anfl,ng(xnfl - xn) - an,ng(xn)
+ us + (52 (7)

with state vector z = [z1, .., £,]" and output vector
Y,

Y1 =21;Y2 = T (8)

y:CQT = [elven]lxa (9)

where e; is a unit n-vector with zero elements
except for element 4 of value 1. Here u; = % and
Uy = Cj—: where A; and A,, are the cross-sectional
areas of tank 1 and tank n and Q;(1 = 1,n)
is the inflow through control (actuator) pump
i. A fault (a leak or a plugging) f in tank i is
obtained by imposing (k; = 1;kj = 0;j # 1).
Disturbances d1,d, are assumed only possible
in the end tanks (this can be generalised). A
leak model for simulation purposes could be of
the form f = a,S;\/2gx;, for tank i. Typical
parameters: a. = 1, 4; = A, = 0.0154m?2,
g = 9.81m/s%, S, = 5% 107°m?, ai,i+1 =
approximate order = ”;‘Sl", (Im < z; < .5bm),
S = 2.7%107°m2%, Qimar = 1 * 107*m?/sec,
Qamaz = 1 % 1074m? /sec.

The function g(s) in (2) is not differentiable at
s = 0 and not expandable as a Taylor series there.
A good polynomial fit for g(s) in (—.5 < s < .5),
where g(s) is replaced by a straight line in (—.02 <
s < .02), is g33(s), a polynomial of degree 33. Re-
placing g in Model 1 by g33(s) is then acceptable
for control purposes, giving a smooth, but com-
plex, nonlinearity in (—.5 < s < .5). However,
by contrast, the inverse function h(s) = g=1(s) is
well behaved. It can be approximated in (—.5 <
s < .5) by a polynomial of order 7 , h7(s), an
increasing function of s,

h7(s) = 2.68525" — 3.3559s° + 2.1866s° + 0.12365
= 2.6852sh,(s) (10)

where hj(s) > 0. The derivative satisfies, h%(s) >
0. An inverse model to Model 1 can be then used.
The following models are now derived, without
proofs, which are used to derive results.

State space version of Model 1. Equations (3)-(7)
can be written

i=-B'AG(Bz) + Qu+6) +kf, (11)
= —grad((z)) + Qu +8) + kf, (12)
where Q = [e1, €,],
k = [0, k'l, k'27 ..y kn—la O]Ia

A = diag(al,Qa a2737 (RS} an—l,na anm)a

G(Q?) = [g(xl)ag(mZ); "7g(xn)]’7

and where
-1 0 0O --- 0
0 1 -1 0 --- 0
p=| 0 LY
0 o --- 0 1 -1
0 o --- 0 0 1
Here, ¢(z) = Z;;l aii19s(T;i — Tig1) +

anmgs(xn)a and gs(s) = fgs g(T)dT'
Model 2. The mapping, w = Bz, transforms
Model 1 to

w=—BB'AG(w) + BQ(u + ) + Bkf, (13)

y=Cypw = CB 'w, (14)
11 1 --- 1
1 _
¢B _[OO--- 0 1}'

Model 3. The mapping, z = ﬁBm, transforms
Model 1 to

t=-SG(z) + DBQ(u + 6) + DBkf, (15)

y=C,z = C’Bilﬁflz, (16)
R -1 -1 -1 R
CB'D1'= [ dB d; 0 2’_11 ] ,whereD =
n

diag(dl,dz, vers Jn) and
N 2 . 2
di =af;, (i=1,.,(n—-1)), d, = ai,. Here,
S = (DB)(DB)' is positive definite , tridiagonal
and symmetric.

Model 4. The mapping, p = Wz, transforms
Model 3 to

p=—(aX)p+ G1(p) + WDBQ(u + 6)
+W DBEf, (17)
y=Cyp=CB~'D'W'p, (18)

where W is a real orthogonal matrix such that
WSW' = ¥ = diag(oi,..,0,), where g(s) in
(2) is approximated by gs3(s) = as + g1(s) and
where G1(p) represents the higher-order polyno-
mial terms in TWG(W'p). Since o; > 0 and
a > 0 the system is locally, open-loop, asymp-
totically stable at p = 0.

Model 5. The mapping, ¢ = DBz, transforms
Model 1 to

i=—-KG(q) + DBQ(u+6) + DBEf, (19)
y:qu = CB_I-D_lq;



(21)
_ [t At dyt _ i
C, = [ 0 - 0 du .whereD = diag(
dl,dg,...,dn) and
1
d =1, d; = 4y (i =1,.,n—1). Here,

Ai—1,i
K = DBB'AD™ 7 is then of tridiagonal form
where

ki,ifl =-1 (Z = 2, ,’I’L)

System (19) is now equivalent to the form

gi +ki19(q1) — k129(q2)

=Ai(ur +8)+nf, (22)
G2+ k2,29(q2) — ka2,39(q3)
=g(q1) +2f, (23)

gi +kii9(qi) — kiiv19(git1)
=9(gi-1) +7f,(i=1,.n-2),  (24)
Gn=1+kn—1,n-19(@n—1) — kn-1,n9(qn)
= g(qn-2) + An—1(u2 + 02) + yn—1£, (25)
Gn + kn.n9(qn)
= Ap(u2 + d2). (26)

where A\ = dl;)\nfl = _dnfla)‘n = dn;

A; = O otherewise, and v; = k;—k;41,1 = 2,.,n—2,
Y1 = —k2,Yn-1 = kn—1,7n = 0.

A Control Problem.

The control problem here is to maintain an inner
tank at a given level while the end tank has a fixed
outflow (z, = fixed), using input u and mesure-
ment y. A fault can occur in any inner tank and
must be detected. Assume the specified inner tank
is tank (j).

Objective 1: establish an equilibrium operating
point (Z,a@).

Objective 2: show system is controllable and show
a control stategy is feasible to maintain z; = z; ,
Tn = Tn, u; > 0, with || z; — Z; || small, for given
Zi.

Objective 3: derive nonlinear observer-based
residuals for detecting a fault, f. )
Equilibrium. With f =0, 60 =0 and (w) =0 in
(13) of Model 2, there obtains

AG(w) = (B)™'Qu (28)

Since w; = z; — ;41 and w, = z, the following
then hold in terms of .

Ti =T + h(u)ay, (i=1,..,n—1)

an,ng(xn) =u1 + us2,

n—1

1 ) 1
ai:Z 2 ;(z#n);anZGQ—

j=i a5 j+1 n,n

Given z; = z; , x, = Ty , the equilibrium values
of i; are obtained by solving

Z; — Tn = h(@)ay, (29)
anmg(xn) — U] = Uz, (30)

assuming z; —Z, > 0 and a, ng(x,)—u1 > 0. The
other equilibrium tank levels are then specified as

T = Ty + hur)oy (i # j). (31)

Define now w = BZ, etc.

Model 2, Controllability-observability, linear case,
6 =0.

Let w = Aw + w and v = @ + v, then a linearized
version of Model 2 is

Aw=—-BB'AA,(w)Aw + BQw + Bkf, (32)
Y=y — Cp® = CyAw (33)

where A, (w) is the Jacobian of G(w) at w.
Linear Control Strategy. If A, exists then: (i)
the pairs (BB'AA,, Be1) and (BB'AA,, Be,,) are
contollable; (ii) the pair (BB'AA,, Cy,) is observ-
able. Replacing ¢(s) by gss3(s) in (13) guaran-
tees existence. A local state-feedback controller
(LQG) of the form v = — K& exists which stabi-
lizes the system about the required equiliibrium
(w, u), where @ is a properly tuned observer esti-
mate of w.

Global nonlinear controller.
(11) with 6 = 0;

z=—grad(p(x)) + Qu + kf, (34)
Then the function V = ¢ satisfies

Consider equation

V=gj(—gs + Qu+kf),
=—9g497 + g3 (Qu + kf)

where g¢ = grad(¢(z)). Thus about z = 0, u = 0;
and no faults , the system is globally asymptot-
ically stable. There exists a gain, R(y1,y2), of
appropriate structure, such that a feedback of the
form u = —R(y1,y2)grad(¢), or modifications for
different equilibrium operating points, gives V<0
(x # 0), implying global asymptotic stability.
Note u is a function of y so no estimator is needed,
but this limits the control performance.

2. TWO OBSERVER DESIGNS.

Design 1. The first design depends on Result 1.
Result 1. System (13), or any of the models (1 to
5) can be transformed to the quadratic polynomial
descriptor form;

Ay (t) = Az(t) + Bad(t) + K £(t) + Bu(t)

m k
+ Z u(t) AL x(t) + Z 2 (1) Atz (t)

k
+ Z (D) [EN(t) + K f(1)] (35)
y(t) =Cxz(t) + Qf(t) (36)



where z(t) € IR™, y(t) € R™. Here z, y, repre-
sent different states to those in (13). A; is non-
singular.
Sketch proof. First define a new state z as z; =
g(w;) or, using hr(s), w; = hy(2;). Differentiating,
(13) gives the for the ith row,
hi(zi)z2i = —siz + (BQ)i(u + ) + (Bk): f,(37)
where the index refers to rows and s; = (BB'A);.
For each z; define six new variables (not necessar-
ily independent) v;; v; = 2”1 (1t =1,.,6). The
left-hand side of (37) can now be written as a lin-
ear combination of the derivatives of z; and v;.
Repeating this procedure for each z; gives the de-
scriptor system (35) of dimension 7n. This system
is equivalent to a system of the same form with
Al = I,
Residual design using Resultl. For system (35)-
(36) a nonlinear time-varying observer can be
designed along the lines given in (Shields et
al.,2001b);

2(t )—Fz()+Ju( )+ Hy(t)

+Zu Hiy(t) + Flz(t)]

+Zy

where 2(t) € IRY, is a linear estimate of Tz(t). A
fault residual (detection signal) is defined as

t) + Flz(t)]

€(t) = L12(t) + Lay(t), (38)

where €(t) € R%(1<d, <d), k> 0.

Computational details and detectability the-
orems can be used from (Shields et al.,
2001a) to design the matrices F, J, H, T,
Ll, LQ, H:m;(l = 1,---,m), Féx(’L = 1,---,m),
Hi(i = 1,---,p),Fi(i = 1,---,p). The obsever
error and residual then satisfy the forms

é(t) = We(t)e(t) + W () F (1), (39)

e(t) = Li [e(t) = TOQF(1)].  (40)

Error convergeance for f = 0 is ensured in the
design.

Design 2. Firsly an algorithm is given to derive the
relationship between the inputs (u1,us) and the
single output Y = d,y2 = ¢,. The specific form
of Model 5, equations (22)-(26), is used. Firstly
functions ¢; (i = 1,.,n) are defined as;

¢1 =q4n = Ya
¢2 = h[¢1 + knmg(y) - )\nUQ]a
$3 =

+h[€252 +kn_1,n-19(¢2) — kn—1,n9(41)

—An—1u2
Gir1=

+hldi + Kiiiig(pi) —

—%ii f1;

(i=3,.n—1),(li=n—i+1). (41)

- ’Y’n—lf]a

Kiijiiv19(di-1)

Here ¢;+1 is a function of Y and derivatives of
Y to order 4, of us and derivatives of us to order
i — 1, and of f and derivatives of f to order i —
2. Note that the influence of § has been dropped
for simplicity and can be recovered by noting the
influence of u. From the form of model 5 and these
definitions;

qn—i :¢i+la 1 :Oa'an_l' (42)

Thus, now ¢,—1 = ¢,, and by substitution into
(22) the following result holds:

Result 2. An input-output relationship from wu;
and us to Y is

bn +k1,19(dn) — k1,29(dn—1)
-nf=0 (43)

By considereing the first output y; in Model 5 a
lower order model involving both inputs and out-
puts is obtained:

Result 3. An input-output relationship from wus to
y1 and Y is

—Aug

n—1

1 1

—Qp_ir1 = - —Y 44
;dzﬁb +1 Y1 d, ( )

Define now the vector ® by its components:
(®)i = ¢i, (i =1,..,n). After some analysis (43)
can be expressed in the form;

Result 4. The input-output relationship in Result
2, from u; and us to Y, is expressable as

Y = Ay (®)[us + %f + 4200, (45)

where A, in full functional form is

AQ(Y Y(n 1) ’U,Q,.,’U,énil),f,.,fn_2),

where Y(”) is the nth derivative of Y w.r.t. ¢ and
where,

Ay = (h'(9(dn))h' (9(¢n-1))---h" (9(¢1)) 7"
= gl(¢n)gl(¢n—l)---gl(¢l) (46)

Clearly, the input-output map (45) exists provided
h(g(#;)) # 0, for all i, near the operating point
(for local existence). Note that the detailed form
of Ay in (45) can easily be derived given n and the
definitions of ¢;. To obtain a smooth input-output
map for fault detection the following procedure is
now proposed:

Step 1; in the definitions of ¢; replace h(s) and
g(s) by hz(s) and gs3(s), respectively. From (10),
since also the devivative h%(s) > 0, the function
A1 (®) in the (45) is well defined and A;(®) # 0



over finite values of ¢;.

Step 2. Define new states z; = Y"1 then (45)
can be written in the following, well defined, state-
space canonical form of dimension minimal degree
n (see (Isidori, 1995) for definitions on relative de-

gree)

t=Jr+eFe(z,U, fy) (47)
Y(t) =ejx (48)

where from (45)

Fo=A1(®)ur + f + 420)],

and U and f; are extended vectors;
U= [Ul,UQ,...,Ugn_l)]l,

ff = [f:fla """ ;f(n—Q)]"

Note that F. is a known polynomial scalar
function in the components of z, U and f;. Here
J has as the form and property

J= [0,61,62, ..,en,l]; J*=0.

Using the same steps on the input-output model
(44) of Result 3 an (n — 1) dimensional canonical
form can be obtained (details are omitted here)
where z has components Y~ (i =1,.,n —1);

t=Jr+e, 1 Fo(y,2,U, fr) (49)

where Fip is a scalar and U and f; are now
different extended vectors;
U= [’U/Q,...,’U,én_2)]’,

ff = [f:fla """ ;f(n—3)]"
Here F. depends on measurment gy; and
J = [0,61,62, ..,en_g], Jr1 =0.

Both canonical forms can be used for fault detec-
tion but here only the first form will be considered
to show the main steps.

Fault detection observer design. Let x = T + z,
U = U + V in the region of the operating point
(z,U) where;

0= )
y(t) =Y (t)— e1Z = €2, (52)

then (47)-(48) has the form

i=Jz+ e Fus(z,V, fr) (53)
y(t) = ez (54)

where J = J + ena’ and

Foo(z,U, ff) — Fea(Z, U, 0) = Fe3 +dz.

Here a’z is the linear term in z.  Assume
there exists a uniformly bounded positive function
a1 (|| V'|]) > 0 such that;

|| FC3(ZlaVa O) - FC3(227V70) ||
<a(lVIDIFz — 2 | (55)

Define the observer estimate of z as z where

Z=J%+enFu3(2,V,0)
+S7lei(y — ) (56)
y(t) = €1z, (57)
and fault detection residual r(t) as
r(t) =W(y(t) —7) = Weje (58)

where W is a scale factor and where S is the so-
lution of the matrix equation

0=—0S—(J'S+SJ) +ei€l, (59)

and where 6 is a positive gain to be chosen. The
error € = z — z satisfies

e=Je+ enDes(t) — S™lejele,  (60)
DC3(t):FC3(ZaV5ff) _FC3(27V70)'

By assumption, if f; =0,
Des < an([[ V)l €ll- (61)

Result 5. For the case fy = 0, the Lyapunov func-
tion, V(t) = € Se, satisfies

V<V -alt), (62)

where a(t) = 2a, (|| V||) (7422,

TS=1] By assump-

tion a 6 exists satisfying
0 > a(t), (63)

and hence the observer error is asymptotically sta-
ble. The residual (58) is asymptotically zero for
no faults and is dependent upon f otherwise.End
result.

Detection analysis. Equation (60) can be written

é:j€+en-D63(6;27V7ff)7 (64)

where J = J — S~1eje;. Due to the form of (60)
the n-th derivative of ¢, (™), satisfies

n—1
€ = (J)e+ > (J)e DG (65)
0

and r(™ = We!e™. Given that €(0) = 0, initially
for example, and f¢(t) # 0 (¢t > 0) then a fault
will be reflected in the nth derivative if
Wel Yo~ (J)enDls £ 0.
In terms of objective 3, a single fault in tank ¢
of equation (6) (ki = 1,k; = 0,(j # 4)) will be
reflected in the vector f; and hence r(t).
Application example. The following example il-
lustrates the two designs for a three-tank system.
Consider the input u = [ug, us]’,
where u; = 2% 107°,0 < ¢ < 1000;

3x107° 0<t<100

P 100 < ¢t < 800
27) 3%107° 800 < ¢ < 900
0 900 < ¢ < 1000
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Fig. 1. Residual Performances for fault f,

Here, us is chosen as a pulse function with 0 values
in intervals [100, 800] and [900, 1000]. A sinusoidal
disturbance was input to tank 3: §; = 0, d2 =
0.3 x 10 °5in(0.3t). Desired objective tank levels
where 1 = 0.42, x5 = 0.35, z3 = 0.28.

Figure 1 shows the performance of residuals for
the first and second designs; shown as ro and e,
respectively. Here f5, is a simulated leak in tank
2. The thresholds 6,.,(= 0.139 x 107?) and 0., (=
1.62 x 1073) are chosen for the residuals r and
€9, respectively. Residual ro picks up more fault
information than the e, for this demanding fault.

4 CONCLUSION

This paper derives several useful transformations
and input-output maps for satisfying the three
objectives concerning control and fault detection.
Two alternative approaches for designing an
observer-based residual are given for detecting
any fault in the set of inaccessible tanks. Ex-
istence of smooth nonlineararites is assured by
using polynomial approximations. For Design
2, assumption (55) must hold for global con-
vergeance of the obsever. By contrast Design
1 assumes a polynomial model of degree 2 and
several conditions must be satisfied for existence
(Shields et al., 2001a). A limited comparison
of residual performances is given for a 3-tank
system (case n = 3). The analysis in the results is
useable for many other hydraulic problems with
similar flow nonlinearities.
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