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1. INTRODUCTION

Recently, D’Andrea (1999) presented a generalized
L2 (GL2) framework to deal with robust perfor-
mance problems involving block structured uncer-
tainty. Some applications (Wang and Wilson, 2001a,
b, c; D’Andrea and Istepanian, 2002) have shown that
GL2 synthesis achieves good robust performance and
is more computationally tractable thanµ synthesis.
Wilson (2000) gave a demonstration of a simple rela-
tionship betweenGL2 andµ analyses of scalar robust
tracking and disturbance rejection problems. In this
paper, we further the results in (Wilson, 2000) to de-
rive tight bounds forGL2 robust-performance analysis
problems by considering the relationship betweenH∞
norm,µ , andGL2 norm.

The notation is standard and follows (Wilson, 2000)
closely. For signals,‖ · ‖ denotes theL2 norm and for
systems it denotes the inducedL2 norm.G?K stands
for the lower linear fractional transformation between
G andK.

2. PROBLEM STATEMENT

A system achieves robust performance if only if it
is internally stable and the performance can be pre-
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Fig. 1. Robust tracking.

served when the system is perturbed. The perturba-
tion can be modelled as a multiplicative uncertainty,
which is widely used and computationally tractable.
For an SISO system, many types of uncertainty mod-
els, such as an additive uncertainty, can be transformed
into the multiplicative ones (Skogestad and Postleth-
waite, 1996). As far as robust performance is con-
cerned, there are two typical problems: robust tracking
and disturbance rejection, which were shown to be
intrinsically equivalent in (Wilson, 2000).

Hence, without loss of generality, we only consider the
robust tracking problem subjected to a multiplicative
uncertainty∆u as shown in Figure 1. A controllerK
is sought such that the system is robustly stable and
achieves robust performance defined by

sup
‖∆u‖≤1

sup
‖d‖≤1

‖z‖ < 1. (1)

The GL2 framework (D’Andrea, 1999) provides the
following equivalent condition for (1) to hold

‖G‖GL2
, sup
‖d‖=1

(‖G1d‖+‖G2d‖) < 1 (2)

where

G =
[

G1
G2

]
=

[
WpT
WyS

]
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Fig. 2.N−∆ structure.

andS= (1+PK)−1, T = PK(1+PK)−1. Note that (2)
defines an induced norm for the systemG.

Now consider robust performance in terms ofµ . Fig-
ure 1 can be transformed into theN− ∆ structure
required forµ-analysis (Skogestad and Postlethwaite,
1996; Zhouet al., 1996). This is shown in Figure 2,
where

N =
[

G1 G1
G2 G2

]
, ∆ =

[
∆u 0
0 ∆p

]
,

and∆p is a full uncertainty block associated with the
performance transfer functionG2. It is easy to show
that, for this simple problem,µ is given by

µ∆(N( jω)) , |G1( jω)|+ |G2( jω)|, ∀ω (3)

and robust performance requires

sup
ω

µ∆(N( jω)) < 1. (4)

3. A RELATIONSHIP BETWEENµ AND GL2

Lemma 1.

sup
ω

µ∆(N( jω))≤ ‖G‖GL2
≤
√

2‖G‖ (5)

PROOF. Firstly, we prove the left hand side of (5).
The proof uses the fact (Desoer and Vidyasagar, 1975)
that, for any frequencyω0, it is possible to find a
sequence of finite energy signals tending to a signal
d0 such that

‖Gd0‖
‖d0‖

= |G( jω0)|.

Suppose the supremum of(|G1|+ |G2|) occurs at a
finite ω0. Then,

sup
‖d‖=1

(‖G1d‖+‖G2d‖)

= sup
d6=0

(‖G1d‖+‖G2d‖
‖d‖

)

≥ |G1( jω0)|+ |G2( jω0)|
= sup

ω
(|G1|+ |G2|).

Therefore,

sup
ω

(|G1|+ |G2|)≤ sup
‖d‖=1

(‖G1d‖+‖G2d‖)

i.e. supω µ∆(N) ≤ ‖G‖GL2
. Similarly, if ω0 = ∞, the

conclusion follows by lettingω0 → ∞ (Zhou et al.,
1996).

Secondly, we prove the right hand side of (5).

(‖G1d‖+‖G2d‖)2

≤ 2
(‖G1d‖2 +‖G2d‖2)

=
1
π

∫ ∞

−∞

[|G1( jω)d( jω)|2 + |G2( jω)d( jω)|2] dω

=
1
π

∫ ∞

−∞
(|G1( jω)|2 + |G2( jω)|2) |d( jω)|2dω.

Then,

‖G‖GL2

= sup
‖d‖=1

(‖G1d‖+‖G2d‖)

≤
√

2 sup
‖d‖=1

{
1

2π

∫ ∞

−∞
(|G1( jω)|2 + |G2( jω)|2) |d( jω)|2dω

}1
2

=
√

2sup
ω

(|G1( jω)|2 + |G2( jω)|2)
1
2

=
√

2‖G‖.

Therefore,‖G‖GL2
≤√2‖G‖. 2

Remark 2.This lemma shows that if a system hasH∞
robust performance subject to the uncertainty

‖[
∆u ∆p

]‖ ≤
√

2,

it has theGL2 robust performance defined in Section 2.
It also shows thatGL2 synthesis is sufficient to guar-
antee robust performance in term ofµ (Wilson, 2000).

Remark 3.From the triangle inequality,

√
2sup

ω

(|G1( jω)|2 + |G2( jω)|2)
1
2

≤
√

2sup
ω

(|G1( jω)|+ |G2( jω)|) .

Therefore,

sup
ω

µ∆(N)≤ ‖G‖GL2
≤
√

2sup
ω

µ∆(N),

i.e. the maximum relative error betweenµ and theGL2
norm, in this simple case, is

√
2−1.

Remark 4.The unit balls for |G1| + |G2| ≤ 1 and
√

2
(|G1|2 + |G2|2

)1
2 ≤ 1 are shown in Figure 3.

Sincesupω µ∆(N) = supω(|G1|+ |G2|) and
√

2‖G‖=

supω
√

2
(|G1|2 + |G2|2

)1
2 , the boundary of the unit

ball for ‖G‖GL2
≤ 1 must lie in the shaded area in

Figure 3.
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We are now in a position to give sufficient conditions
under whichGL2 andµ robust performance analyses
are equivalent.

Theorem 5.(Sufficient Condition 1).Given an LTI sys-

temG=
[
G1( jω)
G2( jω)

]
, if |G1( jω)| and|G2( jω)| achieve

their suprema at the same frequencyω0, then

‖G‖GL2
= sup

ω
µ∆(N) = |G1( jω0)|+ |G2( jω0)|. (6)

PROOF.

sup
‖d‖=1

(‖G1d‖+‖G2d‖)

≤ sup
‖d‖=1

‖G1d‖+ sup
‖d‖=1

‖G2d‖

= |G1( jω0)|+ |G2( jω0)|
= sup

ω
|G1( jω)|+sup

ω
|G2( jω)|

= sup
ω

(|G1( jω)|+ |G2( jω)|) .

Hence,

sup
‖d‖=1

(‖G1d‖+‖G2d‖)≤ sup
ω

(|G1( jω)|+ |G2( jω)|) .

From Lemma 1, we get

sup
‖d‖=1

(‖G1d‖+‖G2d‖)≥ sup
ω

(|G1( jω)|+ |G2( jω)|) .

Therefore,

‖G‖GL2
= sup

ω
µ∆(N) = |G1( jω0)|+ |G2( jω0)|. 2

Remark 6.This theorem appears too restrictive to be
useful. However, since theµ and GL2 syntheses al-
ways try to flatten the magnitudes ofG1 andG2, it is
quite possible that|G1| and|G2| achieve their suprema
at the same frequency. A simple case will be demon-
strated in Section 4.

Definition 7. (Boyd and Barratt, 1991) A functionf
on X is quasi-concave if for∀x1,x2 ∈ X and λ ∈
[0,1],

f (λx1 +(1−λ )x2))≥min{ f (x1), f (x2)}.

Theorem 8.(Sufficient Condition 2).Let |G1( jω)| and
|G2( jω)| be bounded quasi-concave functions. If
|G1( jω)| and|G2( jω)| have their suprema atω1 and
ω2 respectively (sayω1 ≤ ω2), then

‖G‖GL2
= inf

0<y<1

{
y−1|G1( jω0)|2 +(1−y)−1|G2( jω0)|2

}1
2

for someω0 ∈ [ω1,ω2]. Furthermore, if|G1( jω)| and
|G2( jω)| are concave functions forω ∈ [ω1,ω2], then
‖G‖GL2

= supω µ∆(N).

PROOF. Based on the definition of quasi-concave
function, for anyωa ≤ ωb ≤ ω1,

|G1( jωb)| ≥min{|G1( jωa)|, |G1( jω1)|}= |G1( jωa)|
i.e. |G1( jωa)| ≤ |G1( jωb)|. Hence |G1( jω)| is a
monotone increasing function over the frequency
(−∞,ω1]. Similarly |G2( jω)| is also a monotone in-
creasing function over the frequency(−∞,ω1]. In ad-
dition, |G1( jω)| and|G2( jω)| are monotone decreas-
ing functions over the frequency[ω2,∞).

Note that‖G‖GL2
= sup‖d‖=1(‖G1d‖+ ‖G2d‖). By

theGL2 analysis theorem (D’Andrea, 1999; Wang and
Wilson, 2001a),

‖G‖GL2
= inf

y1+y2≥1
‖Y−1

2 G‖

whereY =
[
y1 0
0 y2

]
andy1,y2 ∈ R+.

Let Ḡ = Y−
1
2 G =


y−

1
2

1
G1( jω)

y−
1
2

2
G2( jω)


, then

‖Ḡ‖= sup
ω

σmax(Ḡ)

= sup
ω

λ
1
2

max(Ḡ
∗Ḡ)

= sup
ω

(y−1
1 |G1( jω)|2 +y−1

2 |G2( jω)|2)1
2 .

Thus,

‖G‖2
GL2

= inf
y1+y2≥1

sup
ω{

y−1
1 |G1( jω)|2 +y−1

2 |G2( jω)|2} .

It is clear that, for fixedy1 andy2,

ω 7→ y−1
1 |G1( jω)|2 +y−1

2 |G2( jω)|2

is monotone increasing in(−∞,ω1] and monotone
decreasing in[ω2,∞).
Therefore,

y−1
1 |G1( jω)|2 +y−1

2 |G2( jω)|2

can only achieve its supremum in[ω1,ω2], i.e.



‖G‖GL2
= inf

0<y<1

{
y−1|G1( jω0)|2 +(1−y)−1|G2( jω0)|2

}1
2

for someω0 ∈ [ω1,ω2].

Furthermore, if|G1( jω)| and |G2( jω)| are concave
functions over the frequency domainω ∈ [ω1,ω2], by
using the Minimax Theorem (Balakrishnan, 1981), we
obtain

‖G‖2
GL2

= inf
y1+y2≥1

sup
ω∈[ω1,ω2]

(y−1
1 |G1( jω)|2 +y−1

2 |G2( jω)|2)

= sup
ω∈[ω1,ω2]

inf
y1+y2=1

(y−1
1 |G1( jω)|2 +y−1

2 |G2( jω)|2)

= sup
ω∈[ω1,ω2]

inf
y∈[0,1]

{
y−1|G1( jω)|2 +(1−y)−1|G2( jω)|2} .

Now fix ω ∈ [ω1,ω2] and define

fω(y) = y−1|G1( jω)|2 +(1−y)−1|G2( jω)|2

with y∈ [0,1]. Then f ′ω(y0) = 0 when

y0 =
|G1( jω)|

|G1( jω)|+ |G2( jω)| ∈ [0,1]

and for anyω, f ′′ω(y0) > 0.

Therefore,

inf
y∈[0,1]

[y−1|G1( jω)|2 +(1−y)−1|G2( jω)|2]

= y−1
0 |G1( jω)|2 +(1−y0)

−1|G2( jω)|2
= (|G1( jω)|+ |G2( jω)|)2.

Hence, we get

‖G‖2
GL2

= sup
ω

(|G1( jω)|+ |G2( jω)|)2,

i.e.,‖G‖GL2
= supω µ(N). Note the proof does not rely

on knowingω0 ∈ [ω1,ω2] 2

Proposition 9. If the scaling matrixY is allowed to be
dynamic, more specifically, if

Y = diag

{ |G1( jω)|
|G1( jω)|+ |G2( jω)| ,

|G2( jω)|
|G1( jω)|+ |G2( jω)|

}
,

then

‖G‖GL2
= ‖Y 1

2 G‖= sup
ω

µ∆(N).

PROOF. This proposition is a direct result from the
proof of Theorem 8, therefore the proof is omitted
here. 2

Remark 10.When the scaling matrixY is dynamic,
the GL2 synthesis problem will become non-convex
and need “Y-K” iterations, similar to the so-called “D-
K” iterations inµ synthesis.
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Fig. 4. The relative error betweenGL2 norm andµ.

4. NUMERICAL EXAMPLES

Example 1: How far couldGL2 be fromµ?

Suppose

G1 = k1
T2

1 s2 +2ξzT1s+1
T2

1 s2 +2ξpT1s+1

and

G2 = k2
T2

2 s2 +2ξzT2s+1
T2

2 s2 +2ξpT2s+1

whereξz = 0.7, ξp = 0.3, T1 = 1, k1 = 1, k2 ∈ [0.1,10]
and T2 ∈ [0.1,10]. So, |Gi |, i ∈ {1,2} is a quasi-
concave function with peak value at just below the
frequency1

Ti
.

Let G =
[
G1( jω)
G2( jω)

]
andN =

[
G G

]
.

Hence,

sup
ω

µ∆(N) = sup
ω

(|G1( jω)|+ |G2( jω)|)

and
‖G‖GL2

= sup
‖d‖=1

(‖G1d‖+‖G2d‖) .

WhenT2 = T1 andk2 ∈ [0.1,10], from Theorem 5, we
observe thatsupω µ∆(N) = ‖G‖GL2

. Whenk2 = k1 and

T2 is very close toT1, we obtain thatsupω µ∆(N) =
‖G‖GL2

from Theorem 8. Then, how far issupω µ∆(N)
from ‖G‖GL2

when the parametersT2 and k2 varies

in the domain[0.1,10]? From Lemma 1, we only
know the supremum of the relative error is

√
2− 1.

As a complement to Lemma 1 and Theorem 8, in
this example, we show in Figure 4 the relative error
between‖G‖GL2

andsupω µ∆(N), i.e.,

‖G‖GL2
−supω µ∆(N)

supω µ∆(N)
×100%

asT2 ∈ [0.1,10] andk2 ∈ [0.1,10].

Figure 4 shows that the relative error is nearly zero in
a wide area

{(T2,k2)|T2 ∈ [0.7,1.5], or k2 ∈ [0.1,0.4]∪ [2.5,10]}
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and the maximum error is about6%when{(T2,k2)|T2∈
{0.1,10},k2 = 1}. Hence, in this case, althoughµ and
GL2 robust performance analyses are not equivalent
everywhere, they are very close to each other.

Example 2: The worst case3 where

‖G‖GL2
=
√

2‖G‖=
√

2sup
ω

µ∆(N).

Here we give a worst-case example. Let

Gi( jω) =
{

1 ω ∈ [ωi − ε,ωi + ε]
0 otherwise

wherei ∈ {1,2} andε ∈ R+ → 0. The specific forms
of G1 andG2 are shown in Figure 5.

Define

dωi ,T
(t) ,

{
Aωi ,T

cosωit t ∈ [−T,T]
0 otherwise

whereAωi ,T
= 1√

T(1+
sin2ωi T

2ωi T
)
.

Let dωi
(t) , limT→∞ dωi ,T

(t), then (Zhouet al., 1996)

‖g∗dωi
‖2

‖dωi
‖ = |G( jωi)|.

We construct a signal

d , d1 +d2 , 1
2dω1

(t)+ 1
2dω2

(t),

where‖d‖ = 1, ‖d1‖ = 1√
2
, and‖d2‖ = 1√

2
. In addi-

tion, G1d = G1d1 andG2d = G2d2.

So,

3 This example was originally suggested in the correspondence
with Dr R. D’Andrea, Cornell University, USA.

‖G1d‖+‖G2d‖
= ‖G1d1‖+‖G2d2‖
= |G1( jω1)| · ‖d1‖+ |G2( jω2)| · ‖d2‖
=
√

2.

Hence,‖G‖GL2
=
√

2.

From Figure 5, it is clear that

sup
ω

µ∆(N) = sup
ω
{|G1( jω)|+ |G2( jω)|}= 1

and

‖G‖= sup
ω
{|G1( jω)|2 + |G2( jω)|2}1

2 = 1.

Therefore, in this case,

‖G‖GL2
=
√

2‖G‖=
√

2sup
ω

µ∆(N).

Example 3: Synthesis problem

So far, we have only considered the robust perfor-
mance analysis problems. We now give an example
of synthesis problem.

Suppose the plant is

P =
0.1s+1

s+1
with a performance weightWy and an uncertainty
weightWp given by

Wy =
1

s2 +1.4s+1
, Wp =

s+3
s+30

.

The system diagram is shown in Figure 1 and the
generalized system is




p
z
· · ·
y


 =




0
... WpP

Wy
... WyP

. . . . . . . . .

−1
... −P







q+d
. . . . .

u


 .

The minimal state-space realization of the above trans-
fer function matrix is

Ggen=




Ap 0 0 0
... Bp

B2Cp A2 0 0
... B2Dp

B1Cp 0 A1 B1

... Dp

D2Cp C2 0 0
... D2Dp

D1Cp 0 C1 D1

... D1Dp

. . . . . . . . . . . . . . . . . . . . .

Cp 0 0 −1
... −Dp




.

By using theµ Analysis and Synthesis Toolbox (Balas
et al., 1998), we obtained aµ controller

Kµ =
4202.456(s+93.54)(s+30)(s+2.316)(s+1.771)(s+1)
(s+2043)(s+93.51)(s+10)(s+2.172)(s2 +1.4s+1)

andsupω µ∆(Ggen?Kµ) = 0.1711. Note that, we chose
a second-order scaling matrixD in inf σ̄(DND−1)
(Balaset al., 1998).
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.

By using the LMI Control Toolbox (Gahinetet al.,
1995), we designed aGL2 controller

KGL2
=

26476.73(s+30.03)(s+2.342)(s+1)
(s+1.467e4)(s+10)(s2 +1.4s+1)

and‖Ggen?KGL2
‖GL2

= 0.1785.

Note that the controllersKµ andKGL2
are very similar

if we ignore the real zeros far away from the original
point and cancel a pair of pole and zero close to
each other. The relative error of‖Ggen? KGL2

‖GL2
to

supω µ∆(Ggen?Kµ) is 4.32%.

It is of interest thatsupω µ∆(Ggen? KGL2
) = 0.1785,

which is equal to‖Ggen?KGL2
‖GL2

to the 4th decimal
place. This is not surprising when we observe the
Bode plot of systems|WpT| and |WyS| as shown in
Figure 6. Here we reset the controllerK , KGL2

and
all the notation follows that in Section 2.

It is well known thatH∞, µ, andGL2 syntheses try
to minimize the peak value in frequency domain, and
therefore flatten the magnitude of the system. Hence,
the conditions given in Theorem 5 and Theorem 8 are
common in aGL2 synthesis problem.

5. CONCLUSIONS

GL2 control is a natural extension ofH∞ control and
can be close or equivalent toµ . This paper investi-
gates their relationship resulting in a tight bound on
GL2 robust-performance analysis problems for SISO
systems. Although the work is mainly concerned with
analysis problems, it is helpful in synthesis problems,
as demonstrated by the numerical example. It will be
interesting if (some of) the results in this work can be
extended into MIMO robust performance problems.
In addition, if a dynamical model can be incorporated
into the scaling matrix ofGL2 synthesis, theGL2 could
be more close toµ .
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