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Abstract: Attitude sensors are used in spacecrafts for measurement and control of its 
attitude to meet the mission goals. Sensors using the sun for attitude determination are very 
effective and often applied. The calibration of the sensor gives an important impetus to 
improve the quality. Calibration helps to reduce systematic errors of the measurement 
method, of tolerances of the used components due to manufacturing, deviations in the 
assembly, misalignment etc. An important advantage of the multi-linear and the spline 
interpolation is the continuous improvement of the accuracy by increasing the number of 
calibration coefficients. Both methods are applied to a sun sensor using fuzzy logic. The 
necessary number of parameters or interpolation cells depends on the global input-to-output 
behaviour of the sensor and can be predicted by means of a sensor model. Simulations 
show the ability to compensate systematic errors and allow finding an optimal number of 
calibration cells. This contribution shows, that effective calibration with the belonging 
software can reduce the expense of spacecraft hardware. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
An important device for attitude measurement and 
control of spacecrafts is the sun sensor (Ermakov, et 
al., 1997; Wertz, 1997). Sun sensors have a high 
reliability and are relatively cheep. The accuracy of a 
Fine Sun Sensors (FSS) is better than 0.1 ° 
(Schroeter, 1997; Elstner, 1997). Because of the 
growing interest in the availability of FSS type 
sensors, here such a sensor is discussed (Strietzel, et 
al., 1998). Aims in designing these sensors were 
small costs at sufficient accuracy and substitution of 
hardware by software. In this way a more extensive 
calibration allows to save expenditure especially in 
the mechanical hardware. This requires a stabile 
construction with respect to temperature influence, 
mechanical stability and electro-magnetic compa-
tibility. The necessary expenditure of calibration 
depends on the sensor behaviour and the admissible 
errors. A decisive augmentation of the accuracy one 

obtains by two-dimensional calibration of the sun 
sensor.  
 

2. FOUR-QUADRANT SUN SENSOR 
 
The sensor consists of a 4-quadrant photo diode chip, 
a spacer and a quadratic-dot mask. Depending on the 
sun incident angles �, �, the light dot illuminates 
more or less the pixels A, B, C and D. The photo 
currents of these pixels can be used to calculate the 
coordinates x, y of the light dot position (Fig. 1).  
d is the edge of the quadratic image, x, y describes its 
location. The isolating distance between the four 
pixels is s. 
Regarding fuzzy logic (Drechsel, 1996), the 
linguistic input variable u has 4 linguistic values A, 
B, C and D with their membership functions µ(A), 
µ(B), µ(C) and µ(D) representing the belonging 
photo currents. The values a, d and s are so defined, 
that between the positions (x, y) within the ranges –  
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Fig. 1. Photodiode array, light d
mm, s = 0.11 mm) and rul
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Fig. 2. Signal flow diagram. 
 
The 4 linguistic values (A, B, 
information about the values x a
Fig. 1 gives also the rule base o
linguistic outputs v1 and v2.
inference outputs v1 and v2 ar
membership values µ(– c) and µ
As inference method the 
inference is used. On this base 
membership values of the infere
output v1: 
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x = c [µ(A) – µ(B) – µ(C) + µ(D
 
y = c [µ(A) + µ(B) – µ(C) � µ(D
 
S = µ(A)+µ(B)+µ(C)+µ(D). 
 
The amount c determines the a
input and output. Under th
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xm = (d – s)/2, a � d – s,  
 
ym = (d – s)/2.    

The membership functions µ(A), µ(B), µ(C), µ(D) 
can be replaced by corresponding photo currents iA, 
iB, iC, iD. 
To verify the algorithm of Equ. (3), (4) and (5), the 
photo currents iA, iB, iC, iD of the arrangement in Fig. 
1 are calculated, 
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 gravity method for 
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          (5) 

mplification between 
e condition of the 

ss and a symmetric 
 one obtains: 

          (6) 

          (7) 

  
iA = Io (d/2 + x – s/2) (d/2 + y – s/2),        (8) 
iB = Io (d/2 – x – s/2) (d/2 + y – s/2),        (9) 
iC = Io (d/2 – x – s/2) (d/2 – y – s/2),       (10) 
iD = Io (d/2 + x – s/2) (d/2 – y – s/2).       (11) 
 
The currents depend on the current efficacy Io of the 
photo diodes and the illuminated part of the pixel 
surface. 
The output signals xout, yout result by combining the 
Equ. (3) to (11),  
 
xout = 2 c x /(d – s),  yout = 2 c y /(d – s)       (12) 
 
With c = (d – s) /2  one gets  xout = x, yout = y and  
 
xout = (d – s)/2 [iA–iB– iC +iD]/[iA+iB+iC+iD],        (13) 
 
yout = (d – s)/2  [iA–iB–iC+iD]/[iA+iB+iC+iD].        (14) 
 
This simple structure allows the measurement of sun 
incident angles �m, �m, if the quadratic image is 
produced by a suitable mask and a spacer 
determining a definite distance h between mask and 
chip. The equations  
 
�m = arc tan (xout/h), �m = arc tan (yout/h),        (15) 
 
give the necessary relations. 
The results demonstrate, that the measurements �m 
and �m are independent of each other. 
 
 
3. TECHNICAL REALISATION OF THE SENSOR 
 
The following example describes a technical 
realisation of a sun sensor according to the above-
mentioned principle.  
 

Table 1. Sources of systematic errors 
 
Phase Example Deviation Error 
Design  Reflection, 

diffraction 
not  
considered 

 

Spacer 
tolerance 

� 0.02 mm � 1 ° Manu-
facturing 

Sensitivity of  
photo diodes 

� 2 % � 2 ° 

Displacement 
of the chip 

� 0.02 mm  – 2 °  

Rotation  0.2 ° � 0.4 ° 

Assembly 

Inclination  
of the chip 

0.2 ° � 0.2° 

Operation  Temperature no no 
 



This example considers a set of possible disturbances 
of the sensor behaviour caused by design, 
manufacturing, assembly and operation. 
The regarded effects are listed in Table 1. The 
influences are composed to a worst-case behaviour. 
The simulation results of the systematic errors dalpha 
and dbeta of both sun angles �, � are computed with 
MATLAB and presented in Fig. 3 and 4. 
The relatively small deviations and tolerances given 
in Table 1 cause errors, which forbid the application 
of the non-calibrated sensor. 
 
 

4. NECESSITY OF SENSOR CALIBRATION 
 
Generally the following inaccuracies can disturb the 
sensor behaviour: 
�� systematic errors of the measurement method 

(e.g. nonlinearities) 
�� deviation of the origin of the mask 
�� tolerances of the image size 
�� rotation between mask and sensor chip 
�� dark currents of the pixels 
�� different pixel sensitivity (the sensitivity does 

not depend on the pixel surface) etc.  
 
The calibration and correction procedure consists of 
the following steps: 
�� measurement of the sun angles �, � at all the 

interpolation nodes and determination of the 
errors of � and � 

�� calculation of the interpolation coefficients for 
the concerning interpolation cell 

�� calculation the correcting values for the 
measured sun sensor outputs and correction. 

 
The influences of above-mentioned inaccuracies can 
be decisively reduced by sensor calibration, if these 
errors are stable. Generally the mentioned 
disturbances cause interactions between both sun 
angles. In this case of the two-dimensional 
calibration the corrected sun incident angles �c, �c 
are functions of the measured sun angles �m, �m and 
two-dimensional error correcting functions, 
 
�c = �m + 	�(�m,�m), �c = �m + 	�(�m,�m).      (16) 
 
The aim of calibration is the determination of the 
correcting functions 	�(�,�) and 	�(�,�) by means of 
series of discrete measurements in the operational 
range of the sensor. During calibration the values 
	�(�i,�j) = 	�(i,j), 	�(�i,�j) = 	�(i,j), i = 0, 1, ... m, j = 
0, 1, ... n, at the node i,j are measured as differences  
 
	�(�i,�j) = �i – �m(�i,�j), � = �j,        (17) 
 
	�(�i,�j) = �j – �m(�i,�j), � = �i.        (18) 
 
�i and �j are the adjusted sun angles at the sun sensor  
test bench. �m(�i,�j) and �m(�i,�j) are the measured 
values of the sun incident angles by the sensor under 

the conditions �i and �j without correction. N = 
(m+1)(n+1) calibration points are used. 

Fig. 3. Measurement error dalpha of the sun angle � 
depending on the angles � and �. 

Fig. 4. Measurement error dbeta of the sun angle � 
depending on the angles � and �. 

 
To obtain continuous correction functions 	�(�,�) 
and 	�(�,�) from the discrete measurements 
according to Equs. (17) and (18), a two-dimensional 
interpolation algorithms must be applied. So these 
functions are calculated by means of the errors 
	�(�i,�j) and 	�(�i,�j) at the predefined interpolation 
nodes. 
For the correction according to Equ. (16) real-time 
computation is required.  
Between the Equ. (16) and the Equs. (17) and (18) 
exists a principal difference. The error correcting 
functions 	�(�m,�m) and 	�(�m,�m) refer to the 
inexact measured values and 	�(�i,�j) and 	�(�i,�j) to 
the exact values of the nodes. In the case of 
sufficiently small errors 	� and 	�, the difference can 
be neglected and 	�(�m,�m), 	�(�m,�m) can be 
obtained by interpolation on the base of 	�(�i,�j) and 
	�(�i,�j).  
If the amounts of errors are relatively high in relation 
to the interpolation step, then the following 
procedure should be applied:  
With the Equs. (16) the corrected values �mc and �mc 
are calculated, 



�mc = �m + 	�(�m,�m),  �mc = �m + 	�(�m,�m).     (19) 
 
�mc and �mc are used to calculate a better approach of 
the correcting functions 	�, 	�. So one obtains 
 
�c = �m + 	�(�mc,�mc), �c = �m + 	�(�mc,�mc)     (20) 
 
for the corrected sensor outputs.  
This method is used in the case of Fig. 3 and Fig. 4. 
The specification of the interpolation depends on the 
following aspects: 
�� the number of interpolation nodes 
�� the order of the interpolation polynomial 
�� the number of characterising parameters 
�� the computational expenditure for the error 

correction. 
Global interpolation methods like Lagrange and 
Newton Interpolation are not used here. Therefore for 
the example of the proposed sun sensor a comparison 
of the multi-linear and the cubic spline interpolation 
is performed.  
 

5. MULTI-LINEAR INTERPOLATION 
 
The elementary interpolation cell is sketched in Fig. 
5 (Drechsel, 1996). The step sizes amount 
 
h1 = �i+1 � �i, h2 = �j+1 � �j        (21) 
 
for equidistant interpolation nodes. If m is the 
number of intervals in �-direction and n in �-
direction, then one has M = m
n interpolation cells 
and N = (m+1)(n+1) interpolation nodes. Each node 
requires one measurement for one angle. Because of 
the symmetry of the operational ranges, m = n is 
defined.  
�i, �j are the sun angle values at the nodes i or j 
respectively. 	(�i,�j) = 	(i,j) is the error at the 
interpolation node i, j according to Equs. (16). 
   

Fig. 5. Elementary interpolation cell 
 
The assumed linear edge functions in �-direction 
 
	11 = 	(�i,�j) (�i+1 � �)/h1 + 	(�i+1,�j) (� � �i)/h1,(22) 
	12 = 	(�i,�j+1) (�i+1 � �)/h1 + 	(�i+1,�j+1) (� � �i)/h1, 
             (23) 
allow the interpolation over the whole surface of the 
cell within the interpolation nodes 	(�i,�j), 	(�i+1,�j), 
	(�i,�j+1), 	(�i+1,�j+1) by combining the results of the 
edge interpolations 	11, 	12. One obtains  
 
	(�,�) = 	11 (�i+1 � �)/h2 + 	12 (� � �i)/h2,            (24) 
 

The interpolation can be performed also in �-
direction. Both variants lead to the same result: 
 
	(�,�) = 	(�i,�j) (�i+1 � �)/h1 (�j+1 � �)/h2 +  

+ 	(�i+1,�j) (� � �i)/h1 (�j+1 � �)/h2 +  
+ 	(�i,�j+1) (�i+1 � �)/h1 (� � �j)/h2+ 
+ 	(�i+1,�j+1) (� � �i)/h1 (� � �j)/h2      (25) 

 
With the abbreviations 
 
�� = � � �i, �� = � � �j        (26) 
 
the following polynomial arises 
 
	(�,�) = g�' A g�.         (27) 
g� = (1 ��)', g� = (1 ��)',        (28) 
 
with  

�aoo      ao1   
A  =  �   � ,           (29) 

�a1o      a11 �   
 
aoo = 	(�i,�i),           (30) 
ao1 = [	(�i+1,�i) – 	(�i,�i)]/h1,         (31) 
a1o = [	(�i,�i+1) – 	(�i,�i)]/h2,         (32) 
a11 = [	(�i,�i) – 	(�i+1,�i) – 	(�i,�i+1) 
                    + 	(�i+1,�i+1)]/(h1 h2).       (33) 
 
This bilinear interpolation requires for one 
elementary cell only four coefficients, which are easy 
to calculate. 
The result of calibration is summarised in a list of N 
coefficients characterising the individual sun sensor. 
 
 

6. SPLINE INTERPOLATION 
 
Unlike to the multi-linear interpolation, the spine 
interpolation generates smooth interpolation 
functions (Engeln-Müllges and Reutter, 1996). For 
the calibration of an attitude sensor for measuring 
two sun incident angles the following cubic spline 
interpolation specification seems to be useful: 
�� two-dimensional interpolation (error depends on 

the sensitive and insensitive sun angle) 
�� equidistant interpolation nodes (behaviour of the 

error function) 
�� marginal partial derivatives are not available 
�� vanishing marginal second derivatives (natural 

splines) 
�� cubic spline (reduction of the number of 

interpolation nodes) 
�� no fitting splines (noise level is smaller than 

systematic errors). 
 
Each cell has its own interpolation function fij(x,y). 
This interpolation polynomial has the form 
  
fij(x,y)  =  gx(x)' A gy(y)            (34) 
 
 



gx(x) = [gi0(x) gi1(x) gi2(x) gi3(x)]'   
gy(y) = [gj0(y) gj1(y) gj2(y) gj3(y)]'       (35) 
 
with the vector elements  
 
gi0(x) = 1, gi1(x) = x – xi , gi2(x) = (x – xi)2,  
gi3(x) = (x – xi)3,      (36) 
gi0(y) = 1, gj1(y) = y – yj , gj2(y) = (y – yj)2,  
gj3(y) = (y – yj)3,      (37) 
 
and the coefficient matrix 
 

�aij00 aij01 aij02 aij03  
Aij  =  �aij10 aij11 aij12 aij13 �.    (38) 

�aij20 aij21 aij22 aij23 � 
�aij30 aij31 aij32 aij33 � 
 

For the example of the sun sensor, the variable x 
refers to the angle � and y to �. Each interpolation 
cell i, j needs 16 coefficients. The character of the 
coefficient results from Equ. (34). After the cell 
description i, j the third index of the elements of the 
matrix Aij describes the power of the belonging 
variable x – xi and the fourth the power of the of the 
variable y – yj.   
The calculation of the coefficient matrix requires a 
series of operations on the base of the values f(xi, yj) 
at the interpolation nodes to determine the partial 
derivatives �/�x f(xi, yj) = aij10, �/�y f(xi, yj) = aij01, 
�2/(�x�y) f(xi, yj) = aij11: 
�� calculation of the partial derivatives of the 

marginal region  
�� calculation of the interpolation matrices for the 

x- and y-direction  
�� calculation of coefficient matrix for the current 

cell. 

Fig. 6. Residual error of � at multi-linear inter-
polation (m = n = 8), maximum error � 0.08 °. 

 
The calculations can be simplified for equidistant and 
equal steps over the operational range 
The result of calibration is the number of N values 
f(xi, yj) at the interpolation nodes. This set 
characterises the individual sensor. To realise the 
data transmission for the correction according to the 
Equ. (16) during the mission, there are diverse 
possibilities from the N values f(xi, yj) at the 

interpolation nodes up to 16 M cell coefficients for 
computing Equ. (38) for each cell, depending on the 
computational abilities onboard. 
The calculations show, that the spline interpolation 
requires more computational expense than the multi-
linear interpolation.  
By means of the example of a sun sensor the 
properties of both interpolation methods for 
calibration shall be compared in the following 
chapter. 
 

7. COMPARISON OF THE CALIBRATION 
METHODS 

 
The comparison of the calibration methods on the 
base of multi-linear and spline interpolation is 
performed for the sensor characteristics according to 
section 3. Figures 3 and 4 show, that the uncalibrated 
sensor has measurement errors of the sun angles of 
about 4 ° in an operational range of  – 60 ° � �, � � 
60 °. This error can be reduced decisively by 
calibration.  
The Figures 6 to 8 show the results of error 
correction with multi-linear and spline interpolation 
respectively. They demonstrate the residual error 
after correction. 

Fig. 7. Residual error of � at spline interpolation (m 
= n = 4), maximum error � 0.15 °. 

 
Fig. 8. Example of residual error at spline 

interpolation with m = n = 16. 
 
The Figures 6 to 8 show, that for approximately the 
same errors the multi-linear interpolation needs a 



higher number of interpolation cells than the spline 
interpolation. The spline interpolation gives smooth 
error functions, but the necessary computational 
expenditure is relatively high. 
Fig. 8 demonstrates that at high numbers of 
interpolation cells the residual errors can be reduced 
to very small values, excluding the marginal regions. 
These regions require a special treatment. 
The simulation results for different numbers of 
interpolation intervals are summarised in Table 2. 
 

Table 2. Comparison between linear and spline 
interpolation 

 
m  N  4 M, 

16 M 
error  
/° (pp) 

RMS  
error /° 

 F1  F2 

1 start   5  1.18   
Linear interpolation 
8 81 256 0.16  0.031 30 38 
16 289 1024 0.04  0.0076 120 155 
32 1089 4096 0.01  0.0019 480 621 
Spline interpolation 
4 25 256 0.30  0.064 16 18 
8 81 1024 0.10  0.014 50 84 
16 289 4096 0.02  0.0026 250 453 

pp is peak-to-peak. 
 
The maximum error values in Table 2 are peak-to-
peak values. The practically interesting maximum 
error is the half of the written value. The reduction 
factors F1 and F2 describe the relation between the 
maximum errors and the RMS errors before and after 
the calibration, respectively. Referring to the third 
column containing the total number of coefficients 
for both cases, the comparison in Table 2 shows, that 
spline interpolation is not so effective than linear 
interpolation. The disadvantages of linear 
interpolation are the missing smoothness and the high 
number of calibration nodes. Spline needs a smaller 
number of nodes. The software expenditure required 
by spline interpolation is relatively high. 
 
 

8. CONCLUSIONS 
 
The calibration of the sensor gives an important 
impetus to improve the quality of a measuring 
device. Calibration helps to reduce systematic errors 
of the measurement method, of tolerances of the used 
components due to manufacturing, tolerances and 
deviations in the assembly of components, 
misalignment etc. Depending on the sensor behaviour 
and the applicable expenditure some different 
calibration methods are used. An important 
advantage of the multi-linear and the spline 
interpolation is the continuous improvement of the 
accuracy by increasing the number of interpolation 
nodes and the avoidance of marginal oscillations. 
A successful exchange of hardware expenditure for 
error correcting software requires a stabile hardware 
construction with respect to temperature influence, 

mechanical stability and electro-magnetic 
compatibility. In this way it is possible, to increase 
the accuracy of a fuzzy sun sensor decisively. 
Linear and spline interpolation are useful methods for 
sensor calibration. Higher accuracy at a given 
number of interpolation nodes can be obtained by 
spline interpolation. But this method requires 
relatively high software expenditure. Therefore it is 
recommended to try first with linear interpolation. If 
the results are not sufficient at a useful number of 
interpolation nodes and if a high smoothness of the 
output signal is required, then spline interpolation 
should be applied. Simulation of the error behaviour 
of the calibrated sensor supports this decision.  
The number of interpolation nodes depends on the 
structure (especially the smoothness) of the 
measurement error as function of the both sun angles 
and determines the measurement expenditure during 
calibration. 
This contribution shows that effective calibration 
with the belonging software can reduce the expense 
of hardware, especially with respect to manufacturing 
and assembly. The example of the fuzzy sun sensor 
shows, how a relatively simple device can reach a 
sufficient accuracy. 
 
The author wishes to thank the colleagues of the 
Jena-Optronik GmbH, especially Ms. Karin 
Schroeter, for the support and the helpful discussions. 
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