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Abstract: In this paper, a series of results related to the decoupling of the 10m diameter 
Grantecan’s primary mirror dynamics and its influence on the design of a controller for 
the mirror are presented. Firstly, an algebraic approach of the decoupling method, 
together with its general li nes are shown. Some modifications of this procedure with 
respect to the way it was originally proposed with the aim of its simpli fication and 
improvement are also presented. Finally, a discussion about the design of a robust H∞ 
controller for any of the SISO subsystems obtained after the decoupling and the 
corresponding results is carried out.  Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
Before the Keck Telescope (Mauna Kea, Hawaii ) 
and the Gran Telescopio Canarias (GTC) (La 
Palma, Spain), the largest telescopes in the world 
had an 8m monolithic primary mirror, according to 
the line of many similar projects started at the end 
of the eighties. The aim of the GTC project was to 
provide a significant advance over existing 4m 
class telescopes. Experts in the field concluded that 
the entrance pupil of the GTC needed to have a 
diameter of at least 10m to be 1 mag more sensitive 
than a 4m class telescope. However, the GTC 
project does not simply increment the list of ‘ 8-
10m class’ telescopes. It combines a large 
collecting surface with excellent image quality and 
a suitably optimized observing range in both the 
visible and the infrared. The big size of the GTC’s 
primary mirror has compelled to segment it into 36 
hexagonal pieces. This is the reason why the active 
control of the mirror is necessary. The goal of the 
controller will be to ensure that the segments 
behave all the time as if they composed a 
monolithic mirror. 
 
To make it possible to move the segments in the 
three axial degrees of freedom, each one of them is 
provided with three positioners. At the same time, 
the relative axial position of the primary mirror 
segments is measured using two position sensors 

situated in each common edge between segments. 
Thus, the mirror is, from the point of view of the 
controller, a 108 inputs-168 outputs system. 
 
To design a centralized controller with such a high 
number of inputs and outputs is a complex task; 
while a decentralized policy does not provide a 
good performance since the important effect of 
coupling between the different segments can not be 
neglected. As a consequence of this, a procedure 
for the mirror dynamics decoupling consisting in a 
change of the system eigenvectors basis has been 
carried out. This transforms the original MIMO 
(multi -input/multi -output) system into a set of 
subsystems, many of which are SISO (single-input 
single-output). A robust controller has been 
designed for any of them with the aim of ensuring 
the correct alignment of the segments in presence 
of noise (it has been considered that it is produced 
by the effect of the wind over the mirror) and 
uncertainties in the system model (Hayakawa, 
1999; Huang, 1998; Skogestad, 1998). 
 

2. MIRROR’S DYNAMICS MODELING 
 
Three are the main elements that compose the 
GTC’s primary mirror. They are: 

� The structure or cell , which supports each of 
the segments together with their active and 
passive support systems. Its dynamics is 
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characterized by the 30 dominant modes, being 
the most important one in 17Hz. 

� The segments, modeled as a second order 
system with a 28Hz natural frequency. 

� The positioners or actuators, characterized by a 
5ms of delay and a 60Hz natural frequency. 

 
The whole system dynamics is described by the 
following equations: 
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where: 
� X is the states vector whose components are: 

a : dominant oscill ation modes of the cell (30). 
a

�
: time derivatives of these modes (30). 

ex : distances from the segments to the cell 

(108). 

esxm
�

: segments’ momentum (108). 

r1, r2: two states associated with the time delay 
for each positioner (2×108). 
q , q

�
: two states associated with the 

positioners’ dynamics (2×108). 
� A and B determine the system dynamics and 

include terms such as: 

The cell modal displacements. 
The angular modal frequencies of the cell . 
The damping factors corresponding to the cell 
modes. 
The segments’ base stiffness and damping 
factors. 
The mass associated with one of the supports of 
the segment with the cell . 
The positioners’ natural frequency. 
The positioners’ damping factor and time delay. 

� U are the signals sent to the positioners to 
move the segments. 

� S are the measurements made by the sensors. 
� P is the vector of disturbances caused by the 

wind. 
� C contains the geometric relationship between 

the sensors’ signals and the positioners’ 
relative positions. 

 
 

3. DECOUPLING OF THE MIRROR’S 
DYNAMICS 

 
From the point of view of the decoupling process, 
only the set cell+segments has to be considered. 
The positioners dynamics is already decoupled and 
to include it only contributes to increase the plant 
dimension. In figure 1, the open-loop system 
blocks diagram is shown: 
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Fig. 1. Blocks diagram corresponding to the open-

loop system . 

The first 2N eigenvalues of the structure and 
segments states matrix correspond to the N modes 
used for the cell dynamic characterization, while 
the following correspond to the positioners 
considered. The value of the latter would be all 
equal, called ‘nominal eigenvalue’ , if it were not 
for the coupling elements between the cell and the 
segments. 
 
In the most general case, working with N modes for 
the cell and P positioners, being P>2N, our purpose 
is to demonstrate two things: 
•  There are P-N eigenvalues corresponding to the 

positioners whose value is the ‘nominal’ one. 
•  The vectorial subspace composed of the 

eigenvectors corresponding to the cell and the 
positioners coupled with it is orthogonal to the 
subspace composed of the non-coupled 
positioners. 

The demonstration of these two items will be 
carried out in the complex domain, which is the 
case we are interested in. 
 
 
3.1 Demonstration in the complex domain. 
 
Consider the square matrix of complex numbers 
shown at the top of the next page, where 

Nii 8,2,1, �=m  is a row matrix of P real elements 

that is linear combination of the following real row 
matrices: 

),,( 22,122,112,11 PNNN ttt +++= �t  

),,( 22,222,212,22 PNNN ttt +++= �t  
�
 

),,( 22,22,12, PNNNNNNN ttt +++= �t  

and t
jm  denotes the traspose of the jm  row 

matrix. In addition to this, AN λλλ ,,1 �  are 

complex numbers, kλ  denotes the complex 

conjugated of kλ  and Pll
A �,1, =λ  represents 

each one of the P Aλ  eigenvalues. 

 

Consider now the CEλ  ∈  PNC 22 +  (the 2N+2P 

dimensional complex numbers set) vectorial 
subspace, being C∈λ , composed of the 
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The FEλ  subspace is composed of the 

),( 221 PNvv += �v  vectors satisfying that: 
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When there exists a subspace, W , of a complex 

vectorial subspace, it can be considered the W  
subspace composed of the complex conjugated 
vectors to the ones of W . In general, W  does not 
coincide with W . 
 
Consider now the 

A
Wλ  subspace composed of the 

),( 221 PNvv += �v  vectors verifying that: 
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Notice that 

AA
WW λλ = . As a consequence of this, 

we have that: 
FCFC
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Moreover:
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Lemma 1.- Aλ  is an eigenvalue of A and 
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Proposition 1.- If λ  is an eigenvalue of A, being 

Aλλ ≠ , then: 

i) The vectors of CEλ  are hermitian 

orthogonal to the vectors of FC

AA
EE λλ ∩ . 

ii) The vectors of FEλ  are hermitian 

orthogonal to the vectors of CF

AA
EE λλ ∩ . 

 
Proof:  

i) Be ( ) C
PN Evv λ∈= +221 �v  and 

( ) FC
PN AA

EEww λλ ∩∈= +221 �w . 

 
Then, the hermitian scalar product of the v and w 
vectors can be written as: 
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Consequently: 

0,0,)( >=⇒<>=<⋅− wvwvAλλ , since Aλλ ≠ . 
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For Aλ , the 

A
Wλ  subspace defined by: 

0;;0;0;;0

22

22

12

22

22

12

121 =



















⋅=



















⋅==

+

++

++

+

++

++

+

PN

PN

PN

N

PN

PN

PN

PN

v

v

v

v

v

v

vv ���� tt

 
is considered. 
 
In addition to this, we have that: 
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Lemma 2.- Aλ  is an eigenvalue of A and 
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Proposition 2.- If λ  is an eigenvalue of A, being 

Aλλ ≠ , then: 

i) The vectors of CEλ  are hermitian orthogonal to 

the vectors of FC

AA
EE λλ ∩ . 

ii) The vectors of FEλ  are hermitian orthogonal to 

the vectors of CF

AA
EE λλ ∩ . 

 
The proof of this propositon is analogue to the one 
in the previous case. 
 
 
3.2 The decoupling process. 
 
The decoupling consists of a change of the system 
basis or, more exactly, of the 

A
Wλ  subspace 

eigenvectors. Due to the multiplicity of the Aλ  

eigenvalue, it is possible to recombine the P-N 
eigenvectors of this subspace obtaining a set of P-N 
linearly independent new vectors, in function of 
which the mirror inputs and outputs are non-
interconnected among them. These eigenvectors 
correspond to the Aλ  eigenvalue, which ensures the 

system dynamics has not been modified. As a 
consequence of the change of basis, the system: 
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becomes, as a result of a similarity transformation: 
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or, in function of the set of non-interconnected 
inputs and outputs we have called virtualU  and 

virtualY , respectively: 
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It has been used the relation between ( realU , realY ) 

and ( virtualU , virtualY ), expressed as: 
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As it can be seen in figure 2, the ‘ transformation 
matrices’ , Tu and Ty, define the sytem decoupling. 
 

Read the signals
sent by the GTC’s
pr imary mirr or

sensors:
Yreal

Transform these
signals into the
vir tual outputs:
Yvirtual=Ty

-1∗ Yreal

Compute the
vir tual commands

using SISO
controllers:

Uvirtual

Transform these
commands into
the real inputs:
Ureal=Tu

-1∗ Uvirtual

Send these
comamnds to the
GTC’s pr imary
mirr or actuators  

 
Fig. 2. The control process with the decoupled 

system. 
 

Simplifying the decoupling method. In the way it 
was originally proposed (Acosta, 2000), the 
procedure designed for obtaining the new 
eigenvectors of the GTC’s primary mirror for the 
system dynamics decoupling presents some aspects 
that can be improved. Those are: 
1. The conditions imposed to the new 

eigenvectors for ensuring the segments 
decoupling. 

2. The algorithm followed to generate each new 
eigenvector starting from the 

A
Wλ  subspace. 

 
Both can be simpli fied in such a way that, without 
losing eff iciency: 
1. The conditions the new eigenvectors must 

comply with consist of imposing that the rank 
of both b and c matrices of the system once the 
decoupling is achieved is equal to the number 
of positioners considered. 

 
2. When imposing the conditions in 1, a linear 

system of P-N equations with 2(P-N) unknown 
quantities is obtained. Thus, P-N linearly 
independent eigenvectors complying with the 
decoupling conditions can be obtained by 
simply giving values to the P-N parameters of 
the system of equations. 

 
These two items produce an improvement in the 
decoupling results. These are even better if the new 
basis eigenvectors are orthogonalized among them 
and then normalized in order to minimize the 
numerical problems that appear when calculating 
the inverse of the eigenvectors matrix. The 
decoupling can not be applied when uncertainties 
in the plant dynamics are considered, since this 
breaks the Aλ  eigenvalue multiplicity. In this case, 

the Tu and Ty matrices calculated for the nominal 
plant are used and the decoupling results quickly 
get worse as uncertainties increase. In spite of this, 
the closed-loop system with proportional or 
integral decentraliced SISO controllers is very 
robust when including these disturbances. 
 
The meaning of the decoupling. Thanks to the 
decoupling it is possible to transform the original 
plant into a set of smaller and non-interconnected 



subsystems. In fact, one of these has as many 
inputs and outputs as modes (in general, N) are 
used for the dynamic characterization of the cell 
that supports the mirror. The rest are SISO 
subsystems. From the point of view of the 
segments control, the decoupling plays a 
fundamental role since reduces the problem of 
designing a controller for a large-scale 
multivariable system to the design of a controller 
whose size will vary in function of N and a set of 
P-N SISO ones. Because of this, the decoupling 
makes the study and application of a great number 
of control techniques keeping all the information 
related to the system interconnection possible.  
 

4. A ROBUST CONTROLLER FOR THE 
DECOUPLED SYSTEM 

 
With the aim of ensuring noise rejection and 
stabilit y in presence of disturbances, the design of 
a robust H∞ controller for the decoupled system 
has been carried out. 
 
 

4.1 The control specifications. 
 

The specifications of the control system for the 
primary mirror of the GTC can be summed up as 
avoiding that the noise and the multiplicative 
uncertainties in the model that affect the mirror as 
shown in figure 3 strains its paraboloidal surface 
and diminishes the quality of the images it 
provides. Both performance specifications can be 
mathematically formulated using the sensitivity 
S(s) and the complementary sensitivity T(s) 
functions. 
 
 Noise 

y �

F(s) G(s) I+W3(s) 
�

�
�

W1(s) 

r e u 

 
Fig. 3. The closed-loop system weighted model 

scheme. 
 
As a consequence of the Safonov’s theorem 
(Chiang, 1992), the following inequality is 
obtained: 

)())(( 1
3 jwWjwT −≤σ  

where ))(( jwTσ  is the maximum singular value of 

the complementary sensitivity function, and 
)(3 jwW  reports on the model uncertainties. This 

result means that the inverse of the higher 
multiplicative disturbance is an upper limit to the 
maximum singular value of the close-loop transfer 
function T(s). Moreover, the maximum singular 
value of the sensitivity function is limited by the 
inverse of )(1 jwW , that gives an account of the 

noise input: 
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On the one hand, in reference to the noise, the 
spectrum of its power density is: 
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being f0=10Hz and F=6N. 
 
With the aim of obtaining a transfer function for 
the noise, the assumption that it is the output of a 
linear system whose input is unitary power white 
noise has been made. Applying that the spectral 
power density of a random process coincides with 
its autocorrelation function Fourier transform and 
approximating the 5/6 exponent in the denominator 
of S(f) by the unity for achieving a linear model, a 
first order transfer function is obtained. It can be 
proved that the spectrum corresponding to this 
function and the one of the noise specifications is 
practically the same. 
 
On the other hand, respect to the uncertainties in 
the model of the primary mirror, it must be noticed 
that they are mainly produced by two factors. 
Those are: 1) a ±5% variabilit y of the segments’ 
base stiffness around its nominal value, which is 

mN /106 6× , and 2) a random settling time for 
each positioner after applying a command, which is 
given by an uniform distribution between 10 and 
50ms. 
 
Taking into account the disturbances that affect the 
primary mirror of the GTC telescope described 
above, the following curves are obtained: 
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Fig. 4. Disturbances specifications for the robust 

controller design. 
 

The transfer functions obtained for )(1
1 sW −  and 

)(1
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It must be noticed that )(1
3 sW −  has been 

approximated by an integral factor. This 
approximation respects the bandwidth imposed by 
the uncertainties, which is its most important 
characteristic from the controller point of view. 
 
 

5. RESULTS 
 
A robust fifth-order controller for noise rejection 
has been designed (Zhou, 1998) according to the 
specifications in figure 4, that report on the 
disturbances that affect the plant. This is the lowest 
order controller that produces a good performance 
from the point of view of noise rejection. 
 
The closed-loop system response with the robust 
controller designed is shown in figure 5: 
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Fig. 5. Closed-loop system response in presence of 

noise with the SISO robust controller. 
 
The open and closed-loop simulations have been 
carried out in presence of noise. In addition to this, 
the positioners time delay varies in a range of 0-
5ms, and a ±5% uncertainty in the nominal value of 

the segments’ base stiffness ( mN /106 6× ) has 
been considered. A noise rejection of, 
approximately, one order of magnitude is achieved 
with the controller designed. This result obtained in 
simulation is tested in the scale model of the GTC’s 
primary mirror consisting in two square iron 
segments, as shown in figure 6: 
 
 

 
 
 
Fig. 6. General view of the GTC’s primary mirror 

scale model. 
 
 

6. CONCLUSIONS 
 
A series of results related to the design of an active 
control system for the primary mirror of the Gran 
Telescopio Canarias have been presented in this 
paper. Firstly, some properties the system presents 
and which are used in the mirror dynamics 
decoupling process are demonstrated. The 
decoupling has been carried out due to the 
complexity of designing a centralized controller for 
a large-scale system whose multiple inputs and 
outputs are strongly interconnected among them. 
Then, the general li nes of the method of decoupling 
developed have been exposed. The importance of 
this procedure, consisting of a change of basis, lies 
in the fact that it allows to face the control of a 
multivariable plant without having to neglect any 
information about the system coupling. Some 
modifications of the original decoupling procedure 
whose goal is to simpli fy and improve it, have been 
also shown. 
 
A fifth-order robust controller has been designed 
for noise rejection for any of the subsystems 
resulting from the decoupling of the GTC’s 
primary mirror dynamics. Considering both noise 
and uncertainties in the model, a noise rejection of 
one order of magnitude is achieved. 
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