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Abstract: This paper discusses the problem of constraints on both control and its increment
for linear systems in state space form, in both the continuous and discrete time domains. For
autonomous linear systems with constrained increment, necessary and sufficient conditions
are derived, such that the evolution of the system respects the incremental constraints. It
is also derived a pole placement technique to solve inverse problem, deriving stabilizing
state feedback controllers which respect constraints on both control and its increment. An
illustrative example shows the application of the methodCopyright© IFAC 2002.
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1. INTRODUCTION work has been published on incremental constraints

using state space representations. Henceforth, this pa-
) _ per investigates the problem of stabilizing linear con-

Usually, real plants or physical plants are subject 10 tinyous and discrete time systems with constraints on
constrained variables. The most frequent constraintsyoih control and control increment. Necessary and
are of saturation type, that is, limitations on the gyfficient conditions of positive invariance for incre-

magnitude of certain variables. Hence, this topic is mental domains with respect to autonomous systems
of continuing interest and one could cite, not ex- gre given. Furthermore, a link is done between pole

haustively, (Benzaouia, and Burgat, 1988; Benzaouia, gssignment procedure and these conditions to find sta-
and Hmamed, 1993; Benzaouia, and Mesquine, 1994;,ji7ing controllers by state feedback.

Blanchini 1990;1999 and the references Therein).

Other type of constraints were introduced while con- 1.1 Notations:

sidering predictive control (GPC) and practical ap-

plications that is incremental constraints (Dion, et

al.,1987; Clarke et al. 1987; Warwick, and Clarke, If z € ®" is a vectorgz(.) denotes its derivative with
1988). In fact, for some processes, the rate of variablesrespect to time in the continuous time case@r+ 1)
change is limited within certain bounds. These limits in the discrete-time case. Further, for a scalaz &
can arise from physical constraints that, if exceeded, we definea™ = sup(a,0) anda~ = sup(—a,0), and
could damage the process. From our knowledge, nothen we note that



zt = (z%;)andz” = (z7;)forj=1,..,n

Furthermore,for a matrix A = (a);;andi,j =
1,...,n, theTilde Transformsaredefinedby

~ AT A™

i-[14]

whereAt = (a%);; andA™ = (a7 )ij,%,5 =1,...,n
and

T [ A Az
=

where

(4273 o 0
Al_{azgforiyéj ’andA2_{a;jfori7éj

Also, o(A) denotesthe spectrumof matrix A; D
denoteghe stability domainfor eigervalues(thatis,
the left half planein the continuous-timecaseor the
unit diskin thediscrete-timecase).

2. PROBLEM STATEMENT

Consideralineartime invariantsystemrepresenteh
the statespaceby:

6z(-) = Az(-) + Bu(+) 1)

wherez(-) € R is thestateof thesystemu(-) € R™
is the input constrainedto evolve in the following
domain

Du = {’U,() € §Rm7 —Umin < u() < Umax
Umin, Umax € R} (2)

Thecontrolincrements constraineasfollows:

i) For discrete-timesystems:
—Apin Lulk+1) —uk) <Anax ()

i) For continuous-timesystems:

_Amin S u(t) S Amax (4)
We denote
_ | Ymax _ Amatx
U_|:umin:|, A_[Amin]

the problemstudiedin this paperis thefollowing: find
astabilizingstatefeedbaclkas

u() = Fa(), Fe®m™™ ®)

ensuringclosed-loopasymptoticstability of the sys-
tem with non saturatingcontrols that also respects
incrementatonstraints.

3. PRELIMINARY RESULTS

Considerthelineartime invariantautonomousystem
0z() = Hz(:), 2(to) = 2 (6)

wherez € R™ is the stateconstrainedo evolve in
domain

Dz - {Z € §Rm7 —Zmin S Z() S Zmax
Zmin; Zmax € mg_n*} (7)

Consideralsothat the stateincrementis constrained
asfollows:

For discretetime systems:
—Amin < 2(k+1) — 2(k) <Amax  (8)
For continuoudime systems:
—Amin < £(t) < Amax )

First, recall the definition of positive invariance of
domainD, whichis very usefulfor the sequel.

Definition1. Domain D, given by (7) is positively
invariantwith respecto motionof system(6) if for all
initial conditionz, € D,, thetrajectoryof the system
z(t, t,,2,) € D, forallt > t,

We give also a technicallemmathat will be related
to a pole placemenprocedureo find stabilizingcon-
trollers for systemswith constraineccontrol and in-
crement.

Lemma2. The evolution of the autonomoussystem
(6) respectsincrementalconstraintsif and only if
matrix H satisfies:

(I?\—/I)Z < A for thediscrete-timecase (10)

H Z < A forthecontinuous-timease  (11)

where
Z:[zmax], A:[Amax]

Zmin Amin

Proof. If part Considerthe discretetime caseand

assumethat condition (10) is satisfied.Hence,it is
possibleto write:

2(k+1)—z(k) =

|
I
—
x5
~—
|
I
—
o
~—

but it is known that
—Zmin < Z(k) < Zmax (12)

Next, decomposematrix G = GT — G—, pre-
multiplying (12) by G+ and—G~ , respectiely, gives

_G+zmin < G+Z(k) < G+zmax (13)



_G_zmax S —G_Z(k) S G_zmin (14)

addition of inequalities(13) and (14) enablesus to
write:

_G+zmin - G_zmax S GZ(k) S
G+zmax + G_zmin

accordingto condition(10)

—Amin < =G zmin — G~ Zmax < Gz(k) <

G Zmax + G~ Zmin < Amax

whichis equialentto
—Apin L 2(k+ 1) — 2(k) < Amax-

In thecontinuoudime case,

2(t) = H 2(t)
following the samereasoningreplacingmatrix G by
matrix H, and condition (10) by condition(11), it is
easyto obtain

—Amin < 2(t) < Amax

Onlyif part, Considerthe continuoustime case As-
sumethatthederivative of z(t) respectsheconstraints
and that condition (11) is not satisfiedfor an index
1 < i < n suchthat

[H Z);> A (15)
[H+zmax + H_zmin]i > AZ

max

The following statevectorfor the systemcanbe se-
lected

2 ifhij >0

() =< 0if hy; =0 ,j=1,...,n
—lenin if hij <0

It is easyto checkthat¢(t) is an admissiblestatefor
the system.Calculationof the it* componeniof the
derivative of this stategives

50 = (o)
= Zhij%' (t)

- [H+zmax + H_zmin]i

taking into accountinequality (15), it is possibleto
write

d i
[dt¢(t)]l > Amax
which contradictsthe assumptionThe discretetime
part could be easily deducedreplacingmatrix H by
matrix G in thenecessarpart. m

Evolution of the autonomousystem(6) will respect
both constraintson the statez(¢) and constraintson

its incrementif domainD, givenby (7) is positively

invariantand conditionsgivenin the previouslemma
aresatisfied.

Positive invarianceconditionshave alreadybeenpro-
posedin (Benzaouia,and Burgat, 1988; Benzaouia
andHmamed,1993).Usingtheseconditionsit is pos-
sibleto derive thefollowing result:

Lemma3. Domain(7) is positively invariantwith re-
spectto motion of system(6) and incrementcon-
straints(3) arerespectedf andonly if

(ﬁ -DZ<A , for thediscrete-timecase
HZ< Z
HZ < A , for thecontinuous-timease
H.Z<0

Proof. For the incrementconstraints conditionscan
be derivedfrom the previouslemma,andthe positive
invariance conditions are given in (Benzaouia,and
Burgat,1988;BenzaouiaandHmamed,1993). m

Relating the previous lemmato a pole placement
proceduranakespossibleto solve the problemstated
above. Recallthe pole assignmenprocedureusedin
theso-callednverseProcedurdor constrainedontrol
(Benzaouial994).Considetthetimeinvariantsystem
givenby (1). Without lossof generality(seeRemark
below), assuméhatmatrix A possesse@, —m) stable
eigervalues Resolutionof equation

XA+XBX =HX (16)

givesusa statefeedbaclassigningspectrunof matrix
H (c(H) C Dy) togetherwith the stable part of
spectrunof matrix A in closedoop. For thisequation
to have a valid solution, matrix H must satisfy the
following conditions:

o(HYNo(A) =0
B( #£0,i=1,...m a7)
Gi,t = 1,...,m arelinearly independent

for (; suchthat H(; = X;(;, thatis ¢; eigervectors

of matrix H. Thereexits auniguesolutionto equation
(16)if andonly if

{Xl «o Xn—m Xn—m+1 - Xn}

are linearly independentwhere x;,i = n — m +
1,...,n areeigervectorsassociatedo stableeigerval-
uesof matrix A, andx;,¢ = 1,...,m arecomputed
by

Xi = ()\zIn — A)_IBCZ', 1=1,...m

Hence the solutionis givenby:

F= [41 i lm O ... 0]

[Xl <« Xn—m Xn—-m+1 - Xn] (18)

Remarkd. Withoutlossof generalityit wasassumed
thatthesystenpresentgn —m) stableeigervalues|f
the systemmatrix doesnot satisfy suchrequirement,



it is alwayspossibleto augmenthe representatioas
follows: let v beavectorof fictitious inputssuchthat

(S §R7 —Vmin S v S Umax
—AY < Su< A,

min
wherevnyin andvmax arefreely choserconstrainton
the fictitious inputs. In this case,vectorsU and A
become:

umaw Amaw
v
U _ Umaw A _ Amaw
= BT AL
umzn min
Ui .
mn min

Theaugmentedystemis thengivenby

()

) ] (19)
It is true that this augmentationlimits the domain
of linear behavior of the closed-loopsystem,but it
is always possibleto softenthe fictitious limitations
to enlage the domain. It is easyto seethat for the
squaresystemobtainedthe problemof (n_m) stable
eigervaluesis eliminated and controllability is not
changed.

§z(-) = Az() + [B 0] [Z

4. MAIN RESULTS

With this backgroundwe are now ableto solve the
problem statedin section2. Considera stabilizable
linear time invariantsystemwith constraintson both
controlandincrementf the control, thatis

0z(-) = Az(-) + Bu(') (20)

wherez(-) € R” is the stateof the system,u(-) €
R™ the input constrainedo evolve in the following
domain

Du = {’U,() € §Rm7 —Umin < u() < Umax

Uminy Ymax € m:_n*}

and the incrementof the control is constrainedas
follows:

For discrete-timesystems
For continuous-timesystems
_Amin S u(t) S Amax
Usingthe statefeedback
u(-) = Fz(-), F € R™*" (21)
suchthat
o(A+ BF) e D,

thefollowing domainof linearbehaviour isinducedin
thestatespace

-DF - {.’IJ € §Rn7 —Umin S F.’IJ() S Umax
Umin, Umax € m:_n*} (23)

If the statedoesnot leave thedomain(23), thecontrol
signaldoesnot violate the constraintsThatis, the set
Dy is positively invariantwith respectto motion of
system(20). This givesthefollowing result:

Proposition5. System(20) with statefeedback(21)-
(22) is asymptoticallystableat the origin with con-
straintson both the control andits incrementif there
existsamatrix H € R™*™ satisfyingconditions(17)
suchthat:

i)
FA+FBF =HF
iia)
(ﬁ -NU<A , for thediscrete-timecase
HU <U
(24)
iib)
IEU <A , for thecontinuous-timease
HU <O

(25)

whereU = [uf,,, wub; ]t forallinitial statez, €
Dpg.

Proof. Introducethefollowing changeof coordinates:

z=Fzx
it is possibleto write
0z(-) = Fox(-)
= F(A+ BF)z(-)
— HFz() (26)
= Hz()

With this transformationdomain D is transformed
to domain D, given by (7). Further with conditions
(24) and (25), it is easyto note that domain D, is

positively invariant with respectto the system(26)

while the constraintson the incrementof the control
arerespectedBearingin mindthato (A + BF') € D,

andthat the linear behaiour is guaranteedopne can
concludeto theasymptoticstability of theclosed-loop
system.m

Remarkb. It is worth noting that conditions(24) and
(25) do not affect the setof positive invarianceDp.
However, they presentan additionalconstrainton the
poleassignmenproblem.

Algorithm:

(22) Stepl. Checkif matrix A has(n — m) stableeigerval-

ues,if notaugmenthematrix B with n —m null
column.



Step2. Choosematrix H € R™*™ or H € R™*", if the

systemis augmentedaccordingto (17)-(24) or
(25).

Step3. Computethe gainmatrix F or F, by using(18)
Step4. UseF or extractedF' from F, for thecontrol.

Example7. Consider the double integrator in the
continuous-timestate spacerepresentatiorby (Gut-
man,andHagander1985):

01 0.5
4=[ao] 2= "]
Controlconstraintsaregivenby;

Umin = 1 Umaz = 10

Assumethat control incrementsare constrainedas
follows:

Apmin = 25; Apae =20

As discussedn the Remarkabove, the systemcan
be augmentedwith fictitious constrainednputsv in
domain [—vmin Ymaz]. Selectthe following matrix
H:

7= 0" 2]

0 -05

which satisfiesall the requiredconditions(17). Fur-
ther, the fictitious constraintsare selectedsuch that
conditions(25) aresatisfied.

Umin = 43 Vmaez = 25; AY . =15;AY —=5.

min maz

thatis,

HU=[-75 —1250 —2<0
HU =[14.5 2 22 12.5)*
<[20 5 25 15]°

Solutionof equation(16) leadsto the following aug-
mentedgainmatrix F, :

-1 -2
el

Notethatthe effective gainmatrix F canbe extracted
from the previous matrix.

F=[-1-2]
Theclosed-looynamicsaregivenby:
-1 -2

A+ BF — [—0.5 0 ]

It is easyto noteherethato (A + BF) = o(H).
The obtainedset of positive invariance,as shavn in
Figurel, with theaugmentednatrix F, is givenby:

DFa = {.’IJ € R" | —I9min S Fa-’l: ngaw}

5 4

-20 I I I I I I I I I
-20 -15 -10 -5 0 5 10 15 20 25 30

Fig. 1. Setof positiveinvarianceD g, with atrajectory
emanatingromz, = [24 — 14]*

increment

0 10 20 30 40 50 60
time

Fig. 2. Evolution of the controlincrement

Figurel representthesetof positive invarianceanda
trajectoryemanatingrom theinitial statez, = [24 —
14]*, while Figure2 shavs theevolution of the control
increment,which, it is possibleto see,respectshe
constraints,,;, = —25 andA,,,4. = 20.

5. CONCLUSION

In this papertheregulatorproblemfor linear systems
with constraintson both control and its increment
in the state spacerepresentatiorhas been studied.
Application of necessaryand sufficient conditions,
establishedor linear autonomoussystemssuchthat
their motion respectsncrementalconstraints,is the

key to solve this problem.The link of the so called
inverse procedure,the pole assignmentmethod for



constraineccontrol, to the previous conditionsis the Warwick, K., andD.W. Clarke (1988),Weightedinput
cornerstonef this work. In fact, this link enablego predictive controllers.IEE Proceedingsart D, Voal.,
give a simple algorithm to computea regulator re- 135, No 1.

spectingconstrainton bothcontrolandits increment.
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