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Abstract: This work is devoted to the study of linear continuous-time systems with Markovian
jumping parameters and constrained control. The constraints used in this paper are of
symmetrical inequality type. The approach of positively invariant sets is used to obtain new
necessary and sufficient condition of stochastic positive invariance and sufficient condition
of stochastic stability. These conditions become those given for stationary continuous-time
systems with one mode as known in the literatureCopyright(© 2002 IFAC
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1. INTRODUCTION problem for continuous-time class of systems with
Markovian jumping parameters and constrained con-
Linear systems with Markovian jumping parameters trol by using the positive invariance approach. In this
offers the advantage to model a large varieties of phys-work, only symmetrical constraints are considered. A
ical phenomena. This class of systems has been usedélecessary and sufficient condition allowing the control
successfully to model manufacturing systems, powerlaw to always be admissible despite the stochastic
systems, economic systems, etc. The reader is referedgharacter of the system is presented. A sufficient con-
for example to (Costa, 1996; Boukas and Yang, 1999) dition for stochastic stability of the system is also ob-
for discrete-time and continuous-time systems. It is tained. This paper is organized as follows: The studied
well known that all these physical systems admit in- problem is formulated in Section 2. Section 3 deals
puts limitation which are modeled by constraints of in- with definitions and preliminary results as the nec-
equality type. However, to the best of our knowledge, essary and sufficient condition of stochastic positive
the problem of stochastic stability of continuous-time invariance and the sufficient condition of stochastic
linear systems with both Markovian jumping param- stability for the free system. In Section 4, these results
eters and constrained control have only been investi-are used to design a law control ensuring to the control
gated for discrete-time systems (Boukas and Benza-to remain admissible. The stochastic stability is also
ouia). The regulator problem for linear systems with guaranteed. An algorithm together with an example
constrained control is widely studied after the result illustrating this design is presented in Section 5.
established by (Gutman and Hagander, 1985) . The
tool of positive invariance was successfully applied to
almost all the determiistic systems with constrained 2. PROBLEM FORMULATION
control and/or state see for example (Benzaouia and
Burgat, 1988 - Benzaouia, 1994) and the referencesConsider the continuous-time linear system with Marko-
therein. The aim of this paper is to study the regulator vian jumping parameters defined by:
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wherez(t) € R™ is the statevector u(t) € R™
is the control vector The systemstateis function of
r(t) which representsa Markovian continuous-time
processtaking valuesin a finite discretesetS =
{1,2,...,s} definedwith its transitionmatrix II =
(Aas)a,ses, Whered,g is ascalarsuchthat: g > 0
fora # B andVa € S, A\go = —Zﬂ;ﬁa Aas-
Thetransitionprobability P[r(t+h) = 8|r(t) = o] =
Aagh + o(h)if B # aandl + Aqoh + o(R)if § =«
with, limy,_,o 2% = 0.

The setof constraintds givenfor eachmodea € S,
with g(a) € R™*, by:

Qa) = {u(t) € B™/ —q(a) <u(t) < g(a)} (1)

The objective of this work is to built a stabilizing
regulator,

u(t) = F(r(8)z(?), )

thatsatisfieshe control constraintg1) andstochasti-
cally stabilizeghe system(X).

3. PRELIMINARY RESULTS

In this section,a condition of the stability of system
() is given.Firstthe definition of stochasticstability
is recalled:

Definition1. Thesystem(X) (avecu(t) = 0) is said
to be:

(1) stochasticallystable(SS)f thereexistsa scalam
suchthat: E [ [;° ||lz(2)]|*d¢] < n(ro,zo).

(2) meanexponentiallystable(MES) if thereexist
two scalarp > 0,7 > 0 suchthat: E [||z(¢)|]] <
ne~*t.

(3) mearsquarestable(MSS)if lim;_,», E[||z(¢)|]?] =
0.

Remark2. Onecannotethatthe (MES) stability im-
pliesthe (SS)stability of the system.

Theoem3. Thesystem(X) (with u(t) = 0) is SSif
for all & € S thereexist positive vectorsw(a) € R™t
suchthat:

maz; (%) < —p(a) )
with,
Y lai; (Q)if, 5 # i

_ ¢ Wi (o)
e = 2 hmess (L)

Theproofis givenin appendixi.

Remarkd. Notethatcondition(3) canequivalentlybe
written underthe following form,

A(a)w(@) < —pla)w(a),Ya € S (5)

This conditionwill besatisfiedonly if matrix A(a) is
Hurwitz andu(a) > 0. Further for asystemwith one
mode,onecanobtainu(a) = 0.

Now, a resultconcerningthe applicationof the pos-
itive invarianceconceptto a continuous-timesystem
with Markovian jumping parameterss presentedLet
the systembedefinedby:

E[z(8)|r(8), 2(t)] = H(r(£))2(2), (6)
Z(O) = Zo,
r0) =a,

wherez(t) € R™ is the statevectorof the system.

Definition5. A subsetD of R™ is stochasticallypos-
itively invariantwith respecto (w.r.t) system(6) if for
all zp € D andaninitial modea € S, E[z(t, 20, )] €
D.

For eacha € S, considerthefollowing domain:

D(a) ={z€ R™"| —w(a) < z <w(a),w(a) > 0}

Let

D, = ﬂ’D(a):{zERm|—g0§z§g0} (7
aES

i = minw; (@)

Theoem6. ThesetD, definedby (7) is stochastically
positively invariantw.r.t the system(6) if andonly if:

~

H(a)p <0, forall «a€eS (8)

whereH is definedby (4).
Theproof of this theoremcanbefoundin (Benzaouia
etal.).

4. MAIN RESULTS

In this section,the obtainedresultsin the previous
sectionwill allow us to deal with the problem of
continuous-timesystemawith Markovianjumpingpa-
rametersand constraineccontrol as presentedn the
first section.Recall that the control law is given by
(2). Thecontrolis thenadmissiblej.e.,u(t) € Q(a) if



andonly if the statebelongsn the polyhedraldomain
K (o) definedby:

K(a) ={z € B"/ — q(a) < F(a)z < q()} (9)
Definethefollowing set,

Ke= (] K(e) (10)

a€S
Thesystemin theclosed-loogs obtainedby,

& (t) = (A(r(t)) + B(r(®)) F(r(t)z(t) = Ac(a)(ﬂi(f))

Make thefollowing changeof variables,

z(t) = F(r(t))z(t) (12)
In thiscasedomain(9) is transformedo thefollowing
domain,
D(a) ={z € R™/ — q(a) £ z < g(a),q(a) > 0}
Let

De= () D(a) (13)

a€S

PoseE(.) = E[z (t)|z(t),r(t) andL(r(t)) = I +
hA.(r(t)). Thus,onecanwrite,

B() = a] = Jim L E[s(t + h) — 2(0)]e(t),r(t) = o]

It follows, by using (12) and the developpemenbf
z(t + h),

z2(t+h) = F(r(t+ h))L(r(t))z(t) + o(h)

Taking accountof the definition of the probability
transition,oneobtains,

E() = lim %{Z AaghF(B) [L(a)x(t) + o(h)]
g=1

+F(a) [L(a)x(t) + o(h)] - F(a)x(t)}

Thatis,
E() =) XagF(B)x(t) + F(a)Ac()a(t)
B=1
Then,if thereexistmatricesH (a) € R™*™ suchthat:

> AagF(8) + F(a)Ac(a) = H(a)F(a) (14)
B=1

the dynamicalsystem(11) is transformedby the use
of (12) to the following dynamicalsystem:

E[z@)|2(t),r(t) = of = H(a)z(t)  (15)

At this step,the resultsof Section2 can be easily
appliedto system(15) taking into accountthe set of
constraintg13).

Theoem?7. If thereexist matricesH (o) € R™*™
and vectorsw(a) € R"*, suchthat the following
hold:

(i):
G(a) + F(a)Ao(a) = H(a)F(a), Ya € §16)

(ii):
H@)¥<0,VaeS, (17)

(iii):
A (a)w(a) < —pla)w(a),Ya € S (18)

where,
G(o) =) _ AapF(B),9: =mingi(a) (19)
A=1

- i(a)
@) =3 Aggmaz; |
ﬁz:; g (wi(ﬂ))

then, the closed-loopsystem (11) is stochastically
stablevzy € K.

Proof: The condition (16) allows us to transform
system(11) to system(15). Accordingto Theorem
2.1, condition (17) guaranteeshe stochastiqositive
invarianceof domainD, w.r.t system(15). Thatis,
the stochastigositive invarianceof domaink, w.r.t
system(11)is alsoguaranteed-urthef condition(18)
ensureghe stochastiexponentialstability of the sys-
temin the closed-loop(11). \Y%

Commens. It is worth noting that condition (17)
ensuresthat domain D, is stochasticallypositively
invariantw.r.t system(15), thatmeanghatthe control
will be admissibleonly in the meansenseThus,the
trajectorieof thesystem(11) cansometimeseave the
set. (the controlis saturated)however, according
to condition(18), thestochastistability of the system
will beguaranteed.

5. RESOLUTIONOF EQUATION
G(a) + F(a)Ac(a) = Ha)F(a)

In thissection analgorithmcomputingH (a), Vo € S
is presentedThe sameidea of decomposingnatrix
H(.) asin thediscrete-timecase(BoukasandBenza-
ouia,2002)is followed,let H(«) = H; (o) + Hy(a).
Thefirst stepis theaugmentatiormf the systemby the



introductionof n —m fictitious entries(Benzaouiand
Burgat,1988).
Thematrix H; (a) is chosersuchthat:

with,

{61(a),...,0,(a)} arelinearlyindependent21)

andsatisfying:

(22)
(23)

B(a)8i() #0,
o(A(e) (o(Hi(a)) =0

The looked for matrices F'(a) are solution of the
following equations,

F(a) [A(a) +B(a)F(a)] = Hi(a)F(a) (24)

Thesesolutionsexist if andonly if (Benzaouial994),
theeigervectorsof matricesd.(a), {&1(@), .- ., én(a)},
which are associatedto the assignedeigervalues
{M(a),..., A\ (a)}, arelinearly independentF («)
aregivenby:

yEn(a)] ™
(25)

F(a) = [61(a), -, Bn(@)][61 (@), - .

One can then computematricesG(«a) for all a =
1,...,s. It followsthat:

[G(a) + F(a)Ac(@)] &i(a) = H(a)F()€i(a)

Sincematrix H («) is decomposednderthefollowing
form: H(a) = Hy(a) + Hs(a)
keepingin mind (20), oneobtains:

G()gi(a) = Ha(a)b; (o)

Then,matrix Hz(a) caneasilybe deducedandsoon
for matrix H («):

Hy (o) = G(a) [e1 (@), - -, n(@)] [B1(a), . , ()] "
2

Algorithm:

1) Augmentthe matricesB(«a) for eachmodea €
S with n — m null row and choosematrices
H, () accordingo (21)-(23).

2) Computethe gain matricesF'(a) by using (25)
and matrices A.(a) of the systemin closed-
loop. Note thatthe obtainedmatricesA.(a) are
Hurwitz by construction,se@Benzaouia,1994).

3) Choosevectorsw(a) € R™ satisfyingu(alpha) >

0 andtestif condition(18) is satisfied.Onecan
chooseaw(a) = wy independentlyf themodea
, the condition (18) becomesﬁc(a)wo <0.If
notgo to Stepl to modify the matricesH; («).

4) Testif (17) is satisfied,if not go to Step1 to
modify matricesH; ().

Example9. Considetthefollowinglinearcontinuous-
time systemwith Markovianjumpingparametersvith

2 modes:A(1) = [f ‘_Oil] ,B(1) = “
30

0.5
A(2) = [0.1 —2.1] B(2) = [ 1 ]
with ¢(1) = 20, ¢(2) = 30
The Markovian processis describedby its matrix
transitiongivenby:

n=[5%)

For eachmodea;, thefictitious entriesareintroduced
asfollows:

—g(a) <v(t) < gla),a=1,2

Considerthefollowing matricesH; (a) :

H1(1):[_91 -5 -1 ]

0o —06| =0 _os
RN

Theobtainedgain matricesF'(«) are:

—9.4211 —1.1789
F)= [—4.9474 4.0074 ]

~10.9624 —0.9188
F@) = [17.6317 —3.2158]

Notethattheeffectivegainmatricesareto beextracted
from the previous matrices.The obtainedmatricesin
theclosed-looparethengivenby:

—7.4211 —1.2789]

A:(1) = [—8.4211 —2.1789

—2.4812 —0.4594
A:(2) = [—10.8624 —3.0188]

One can verify that matricesH(a) , a € S satisfy
conditions(17) with thefollowing data

9(1) = 40, 9(2) = 25,9 = [20,25]""
For this choice,onehas:

H(1)¥ = [-145.617,-73.3555]7 < 0
H(2)9 = [-81.652,-94.3205] < 0
Further the condition (18) of Theorem4.1 is also
satisfiedwith
w(l) = [1.89, 8] ,w(2) = [2, 7.8]"
Thatis, (1) = 0.0513, 4(2) = 0.1746 and,

A (Dwr + p(l)w, = [-3.6978, —1.1051]"
A.(2)ws + p(2)ws = [ -1.0209, —0.4599]"
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Fig. 1. presentshesetk’. of stochastiénvariancepos-
itive and stochasticstability of the systemwith
Markovian jumping parametersand constrained
control.

6. CONCLUSION

In this paper necessaryand sufficient conditions
for domainD, to be stochasticallypositively invari-
ant w.r.t the system(6) are establishedfor linear
continuous-timesystemavith Markovianjumpingpa-
rametersA new sufficient conditionof stochasticsta-
bility is alsoobtainedby usingthe nonquadraticLya-
punos function as is usually the casein the prob-
lems with constraintsof inequality type. Thesetwo
resultsareappliedto give anew sufiicientconditionof
stochasticstability for systemswith Markovian jump-
ing parameterand symmetricalconstraineccontrol.
An Algorithmis alsopresentedasedntheresolution
of the obtainedalgebraicequationto computematri-
cesH (a).
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Appendix 1

Considerthefollowing Lyapuna functioncandidate:

,st=1...,n (27)

Theinfinitesimalgeneratois computedy:

AV (z(t), ) = lim 1 {E V(z(t+ h),rt+ h)|rEt) =a] = V(z(t),a)}

B 1 EAERD] 1
%11)1%) h {E [maxliwi(r(t T h) |r(t) = a] V(x(t),a)}

Recallthat, z(t + h) = z(t) + hA(r())z(t) + o(h) = L(r(t))z(t) + o(h) with L(r(t)) = Iz + hA(r(t)).
Moreover,

E [m(n.wv(ﬂ - a] — Z maz; |L(a)z

s > Plr(t+h) = flr(t) = o]

Usingthe definition of thetransitionprobability, oneobtains,

AV (z(t),a) = %11)1%) — {Z )\aﬁmaxl i(-;)h)l h +maz; I )xu(}f)(iz)-i_ ol _ V(z(t), a)}
- |z:(8)] 1 |(L(a)z(¢))i] |z (2)]
< ﬁz::l AagMaz; — w3 () + %11}11 5 [maxiw — maz; wi(a)]
Letl;j(a),i=1,...,n,5 =1,...,n bethecomponenbf matrix L(a), It followsthat,
- [ wile) im L |Lix () |wi (a)
AV (z(t),a) < {ﬁ; AasMmaz; (wz(ﬂ)) %_} N lmaxlz (@) -1 }V(x(t),a)
Since,
2:1 |lir (@) |wi () . |wk _ ; h|‘:;j((3))|wk(a) + |1+ hayi(a)| = ; h%wk(a) + 1+ hay; (o) for asmallh
A
Thisleadsto, AV (z {Z AasMmaz; ( Zggi) + maxi%()a))i} V(z(t),a)
Thatis, E [AV (z(t), a)] < —pE [V (z(t), a)] ;vl:'iﬁ)p maxaes pla)
Onecanusethefactthat:  V(z(t),7(t)) = V (o, o) +f0 AV (z(t),r(s))ds
whichimplies,
t
EV(z(t),rt)] < E[V(zo,ro] + / E[AV (z(s),7(s))] ds
.’I,'(),T'o / E
By virtue of Gronwall lemma,onehas:
E[V(z(t),r()] < e " E[V (z0,70)] (28)

(28)impliesthat E [||z(¢)|]] < ne~*t with ||z(t)|| = max; |z;(t)|]andn = maxyes min; w; (@) E [V (zo,70)] V



