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AbstractThis paper addresses the stabilization problem of "sandwich systems", i.e. intrin-
sically nonlinear and uncertain SIMO plants containing simultaneoulsy either backlash
and dead zone in the actuator and dead zones in sensors. The proposed controllers, based
on sliding mode control, have been shown to achieve state (hence output) boundedness.
The rationale followed in control design consists in ensuring the achievement of a sliding
motion which, in turn, guarantees the attraction of the state vector towards a boundary
layer, whose maximum width depends on the uncertainty on output measurements caused
by the presence of unknown deadzones in sensors. Furthermore, the control laws have
been designed as to simultaneously guarantee also the avoidance of actuator nonlineari-
ties, ensuring that the ’forbidden region’ of dead zones and backlash are never entered,
even in the presence of uncertainties. Simulation results show the effectiveness of the
proposed controllers.
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1. INTRODUCTION

Control design techniques usually applied in practice
do often ignore the presence of nonsmooth nonlin-
earities both in plant actuators and sensors. Due to
physical imperfections, indeed, such nonlinearities are
always present in real plants, particularly in mechan-
ical systems. Just to name a few, mechanical connec-
tions, hydraulic servovalves and electric servomotors
are known to contain backlash: instability or position
errors in gear train are often caused by an amount of
backlash greater than that necessary to ensure satisfac-
tory meshing of gears (Campos et al., 2000). More-
over, dry friction or stiction is a common source of
deadzone nonlinearities in electromechanical systems,
and temperature changes on the surface of these com-
ponents can produce relevant variations of deadzone
effects (Tsang and Li, 2001). Robot arms, in partic-
ular, have been found to lack in steady-state posi-
tioning accuracy as a result of a number of different

sources, among which backlash in the joint drive train
(Ahmad, 1988). Finally, proportional-derivative con-
trollers have been observed to produce limit cycles if
the actuators contain nonlinearities such as backlash
and deadzones (Campos et al., 2000).

Although often neglected, these nonlinearities are par-
ticularly harmful, because they usually lead to de-
terioration of system performance. As discussed in
(Tao and Kokotovic, 1996), "Actuator and sensor non-
linearities are among the key factors limiting both
static and dynamic performance of feedback control
systems". They are the causes of oscillations, delays
and inaccuracy: for example, servomechanisms usu-
ally require complete elimination of backlash to work
properly.

A number of techniques are available in the litera-
ture to compensate for nonlinearities present in the
actuator only. Starting from the pioneering work by
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Recker et al. (Recker et al., 1991), the idea of em-
ploying an adaptive inverse of the nonlinearity itself
in the controller in order to cancel its effects has been
widely used to cope with actuator deadzones, back-
lash and hysteresis with unknown parameters (Tao and
Kokotovic, 1996) (Grundelius and Angeli, 1996) (Tao
and Kokotovic, 1994b) (Tao and Kokotovic, 1995b)
(Tao and Kokotovic, 1995a). These papers all require
that the plant is linear. Continuous-time dynamic in-
version using neural networks is presented in (Seidl
et al., 1998), (Selmic and Lewis, 1999), (Selmic and
Lewis, 1998), while fuzzy logic is used in (Kim et
al., 1994), (Lewis et al., 1997), (Woo et al., 1998).
Variable Structure Control (VSC) has been used as
well: in (Azenha and Machado, 1996), a linear plant
is considered, and a describing function based model
is adopted for the input nonlinearities. In these papers,
intrinsically nonlinear plants are addressed. Very re-
cently, the fusion of relay feedback control with ro-
bust nominal model following control has been used
and experimentally tested to handle actuator deadzone
nonlinearities (Tsang and Li, 2001).

Nonsmooth nonlinearities affecting only the plant out-
put have been less widely addressed in the literature.
Experimental evidence, however, shows that the per-
formance of control systems is severely affected, as in
the case of actuator nonlinearities. For example, errors
in robot arms positioning accuracy are due, among
other reasons, to the fact that joint sensors are located
in the actuator rather than on the joint (Ahmad, 1988),
the presence of a backlash gap in gears causing the
output motion not to directly follow the input motion.
In this framework, results based on adaptive control
are available (Tao and Kokotovic, 1994a) (Tao and
Kokotovic, 1996) as well as compensation techniques
by disturbance observers (Shahruz, 2000). Moreover,
a RLS algorithm avoiding nonlinearity inversion hold-
ing for deadzones in sensors is described in (Wigren
and Nordsio, 1999). In all cases, a plant linearity as-
sumption is still required.

From the above discussion, it follows that the simul-
taneous presence of nonsmooth nonlinearities both
in actuators and in sensors should be accounted for.
Hence, the so called "sandwich systems" are, at the
moment, a challenging issue for control researchers.
Moreover, a noticeable uncertainty should be taken
into account in nonlinearities models parameters, in
order to match a suf£ciently wide set of real situations.

In this paper, an alternative robust control method,
based on Sliding Mode Control (SMC) (Utkin, 1992),
is proposed to handle sandwich systems containing
simultaneously either backlash and dead zone in the
actuator and dead zones in sensors. Nonsmooth non-
linearities have been described using piece-wise lin-
ear functions (Tao and Kokotovic, 1996) (Desoer and
Shahruz, 1986), and intrinsically nonlinear and uncer-
tain SIMO plants are addressed. Model inversion is
not required, to avoid the possible ampli£cation of
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Fig.1 - Block scheme of the plant.

additive measurement disturbances which may result
from inversion of the output nonlinearity.

The robust stabilizing sliding mode control laws pre-
sented guarantee the boundedness of the system state
variable. The control policy adopted, indeed, ensures
that the state vector is attracted towards a boundary
layer whose maximum width depends on the uncer-
tainty on output measurements caused by the presence
of unknown deadzones in sensors. On the contrary, ac-
tuator nonlinearities are simply avoided, ensuring that
the ’forbidden region’ of dead zones and backlash are
never entered, even in the presence of uncertainties.
Note that the presence of the boundary layer is also
crucial for avoiding the high frequency oscillations
typical of SMC.

2. PRELIMINARIES AND PROBLEM
STATEMENT

An uncertain nonlinear system of the following form
is given:


























ẋ1 = x2

ẋ2 = x3

...
ẋn = h(x,p) + g(x,p)u
y = φ(x)

(2.1)

where x ∈ IRn is the state vector and u ∈ IR is the
plant input. The vector p ∈ P ⊆ IRp, representing
plant physical parameters, is assumed to vary within
a closed and bounded subset P ⊆ IRp. The function
g(x,p) : IRn × IRp → IR is the state-input map,
h(x,p) : IRn× IRp → IR describes the intrinsic plant
nonlinearity and possible disturbances. Both functions
g(x,p) and h(x,p) are assumed to be smooth with
respect to their arguments.

As in many realistic situations, the system state vector
is supposed not accessible for direct measurement.
The output of n sensors are available instead, the
vector y containing such measurements (see Fig.1).

The nonlinear vectorial function φ(x) = [φ1(x1)

φ2(x2) . . . φn(xn)]
T describes the unknown nonlin-

earities appearing in sensors. Dead-zone nonlinearities
are assumed present, described by the following char-
acteristics:
Sensor Dead Zone:

yi = φi(xi) =











m(i)
r (xi − b(i)r ) if xi ≥ b(i)r

0 if −b
(i)
l < xi < b(i)r

m
(i)
l (xi + b

(i)
l ) if xi ≤ −b

(i)
l

i = 1 . . . n (2.2)



The nonlinear system (2.1) is supposed to be preceded
by the actuating device u = f(v) (see Fig.1), u
being the plant input not available for control. In this
paper dead-zone or backlash nonlinearities have been
considered to be present in the actuator:
Actuator Dead Zone:

u = f(v) =







µr(v − βr) if v ≥ βr
0 if −βl < v < βr
µl(v + βl) if v ≤ −βl

(2.3)

Actuator Backlash: A compact description of back-
lash is (Tao and Kokotovic, 1995b):

u̇ = G(u, v, v̇) =















νv̇ if v̇ > 0 and u = ν(v − cr), or
(2.4a)

if v̇ < 0 and u = ν(v − cl)
0 otherwise (2.4b)

The idea pursued in this paper is to design slid-
ing mode control laws able to achieve robust per-
formances in the presence of the above non-smooth
nonlinearities with uncertainties.

De£ne the following sliding surface:

s(x) = cn
dn−1x1

dtn−1
+ cn−1

dn−2x1

dtn−2
+ . . .+ c1x1 =

=

n
∑

i=1

cixi = 0 (2.5)

where the coef£cients ci, i = 1 . . . n are such that the
polynomial

∑n
i=1 ciλ

i−1 is Hurwitz. Due to this latter
condition, without loss of generality it can be assumed
that ci > 0 ∀i = 1 . . . n.

The following Assumptions are introduced:

Assumption 2.1. The function g(x,p) is such that:

g(x,p) 6= 0 ∀x ∈ IRn,∀p ∈ P (2.6)

Due to the smoothness of g(x,p), it can be assumed,
without loss of generality, that g(x,p) > 0 ∀x ∈
IRn,∀p ∈ P .

Assumption 2.2. The coef£cients of the actuator dead
zone and backlash nonlinearities are uncertain, with
uncertainties bounded by known constants, i.e.:

• Actuator Dead zone:

µr = µ̂r +∆µr, |∆µr| ≤ ρµr
µl = µ̂l +∆µl, |∆µl| ≤ ρµl

βr = β̂r +∆βr, |∆βr| ≤ ρβr

βl = β̂l +∆βl, |∆βl| ≤ ρβl

(2.7a)

• Actuator Backlash:

ν = ν̂ +∆ν, |∆ν| ≤ ρν
cr = ĉr +∆cr, |∆cr| ≤ ρcr
cl = ĉl +∆cl, |∆cl| ≤ ρcl

(2.7b)

Assumption 2.3. The coef£cients b(i)
r , b(i)l , i = 1 . . . n

of the sensor dead zone nonlinearities are uncertain,
with uncertainties bounded by known constants, i.e.:
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Fig.2 - Variation bounds of xi.

b(i)r = b̂(i)r +∆b(i)r , |∆b(i)r | ≤ ρ
(i)
br

b
(i)
l = b̂

(i)
l +∆b

(i)
l , |∆b

(i)
l | ≤ ρ

(i)
bl

i = 1 . . . n (2.8)

Note that the above Assumptions are not restrictive,
and do hold for a wide class of nonlinear plants,
especially mechanical systems.

In this paper the following problem is addressed:

Problem 1. The problem here considered consists in
£nding a feedback controller guaranteeing bounded
state variables (hence bounded outputs) for the system
(2.1), in the case where the nonlinearity of the actu-
ating device is either a dead zone or a backlash, and
dead zone sensor nonlinearities are present, too.

3. PLANT WITH SANDWICH DEAD
ZONE/DEAD ZONE NONLINEARITIES.

In this section we consider the plant (2.1) with the
dead zone nonlinearity appearing in both actuator and
sensors.

De£ne the following quantities for i = 1 . . . n:

b̂i =

{

b̂(i)r if yi > 0

−b̂
(i)
l if yi < 0

(3.1a)

mi =

{

m(i)
r if yi > 0

m
(i)
l if yi < 0

(3.1b)

∆bi =

{

∆b(i)r if yi > 0

−∆b
(i)
l if yi < 0

(3.2)

ρ
(i)
b1 =

{

−ρ
(i)
br if yi > 0

−ρ
(i)
bl if yi < 0

ρ
(i)
b2 = −ρ

(i)
b1 (3.3)

xi1 =







yi

mi

+ b̂i + ρ
(i)
b1 if yi 6= 0

−ρ
(i)
bl − b̂

(i)
l if yi = 0

(3.4)

xi2 =







yi

mi

+ b̂i + ρ
(i)
b2 if yi 6= 0

ρ
(i)
br + b̂(i)r if yi = 0

(3.5)
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Fig.3 - Backlash model.

Note that the expressions (3.4), (3.5) are the variation
bounds (due to the bounded uncertainties in the dead-
zone parameters b(i)l , b(i)r ) of the i-th component of
the state vector x, obtained in correspondence of the
measured i-th entry yi of the sensors output vector y

(see Fig.2).

Let Q ⊆ IRn be the box delimited by the above
bounds, i.e.:

Q = {x ∈ IRn : xi ∈ [xi1 xi2]} , i = 1 . . . n (3.6)

Taking into account (2.2), (2.8), expressions (3.4) and
(3.5) become, respectively:

xi1 =

{

xi −∆bi + ρ
(i)
b1 if yi 6= 0

−ρ
(i)
bl − b

(i)
l if yi = 0

(3.7)

xi2 =

{

xi −∆bi + ρ
(i)
b2 if yi 6= 0

ρ
(i)
br + b(i)r if yi = 0

(3.8)

De£ne also the following sets: I = {1 . . . n}, J =
{j ∈ I : yj 6= 0}, K = {k ∈ I : yk = 0}. The
following Lemma can now be proved.

Lemma 2. The sign of s(x) can be uniquely deter-
mined from the sensors output vector y at any time in-
stant when s(x) is outside a bounded region described
by the following inequalities:
{

s(x) > −ε2
s(x) < ε1

(3.9)

with:

ε1 = 2
∑

j∈J

cj |ρ
(j)
b1 |+

∑

k∈K

ck

(

b(k)
r + ρ

(k)
br + b

(k)
l + ρ

(k)
bl

)

(3.10)

ε2 = 2
∑

j∈J

cjρ
(j)
b2 +

∑

k∈K

ck

(

b(k)
r + ρ

(k)
br + b

(k)
l + ρ

(k)
bl

)

(3.11)

The proof is omitted for brevity.

The main result about the practical stabilization of
the plant (2.1) with dead zone nonlinearities in both
actuation and sensing devices can now be stated after
the introduction of the following de£nitions.

Given a measurement vector y and the corresponding
box Q ⊆ IRn de£ned in (3.6), the following quantities
can be introduced:

smin(x)
def
=

n
∑

i=1

cixi1 smax(x)
def
=

n
∑

i=1

cixi2

hM
def
= max

x∈Q, p∈P
|h(x,p)| (3.12)

σM
def
= max

x∈Q

n−1
∑

i=1

|cixi+1| (3.13)

gM
def
= max

x∈Q, p∈P
g(x,p), gm

def
= min

x∈Q, p∈P
g(x,p)

Finally, using (3.12), (3.13) de£ne:

ρM = σM + cnhM (3.14)

Theorem 3. The system described by (2.1),(2.2),(2.3)
is given, under Assumptions 2.1, 2.2 and 2.3. The
following control law:

v =























































θ1 ·
η + ρM + cngM (µ̂r + ρµr)(β̂r + ρβr)

cngm(µ̂r − ρµr)
if smax(x) < 0 (3.15a)

−θ2 ·
η + ρM + cngM (µ̂l + ρµl)(β̂l + ρβl)

cngm(µ̂l − ρµl)
if smin(x) > 0 (3.15b)

0 otherwise (3.15c)

where η > 0 and θ1 > 1, θ2 > 1, ensures the achieve-
ment of a sliding motion on (2.5) with a boundary
layer whose maximum width is given by (3.9)-(3.11),
i.e. guarantees the boundedness of the system state
variables.

The proof is omitted for brevity.

4. PLANTS WITH SANDWICH
BACKLASH/DEAD ZONE NONLINEARITIES.

In this section it is considered the plant (2.1) having
a backlash nonlinearity in the actuator and dead zones
in sensors.

The following model of backlash (Desoer and Shahruz,
1986) (Corradini and Orlando, 2002), equivalent to
(2.4), will be used for design in the following.

De£ne ΣB as the set of states of the backlash model,
i.e. the set of all the points in or between the lines of
slopem (see Fig.3). For any point pk = (vk, uk)∈ΣB

at any time tk de£ne two functions Fi(·, vk, uk, tk) :
[vk,∞) → [uk,∞) and Fd(·, vk, uk, tk) : (−∞, vk]
→ (−∞, uk]:

Fi(v, vk, uk, tk) =







uk vk < v <
uk

ν
+ cr

ν(v − cr)
uk

ν
+ cr ≤ v

(4.1a)

Fd(v, vk, uk, tk) =







ν(v − cl) v ≤
uk

ν
+ cl

uk
uk

ν
+ cl < v ≤ vk

(4.1b)



The characteristic of backlash can be de£ned as fol-
lows: for any state (vk−1, uk−1) ∈ ΣB at any time
tk−1 and for any input v monotone over [tk−1, tk] the
output u(t) ∀t ∈ [tk−1, tk] is given by:

u(t) =

{

Fi(v(t); vk−1, uk−1; tk−1)
Fd(v(t); vk−1, uk−1; tk−1)

(4.2)

according to whether v(·) is monotonically increasing
or decreasing respectively. Therefore, for any initial
state, at any time t and for piecewise continuous input
v, the backlash output is uniquely determined.

De£ne the following quantities:

vl =
uk

ν
+ cl vr =

uk

ν
+ cr (4.3)

Under Assumption 2.2, a minimum value for vl and
a maximum value for vr can be found in the time
interval t ∈ [tk−1, tk). Denote these values with vmin

l

and vmax
r respectively:

vmin
l = min

t∈[tk−1,tk)
vl(t) vmax

r = max
t∈[tk−1,tk)

vr(t)

The following Theorem can now be stated.

Theorem 4. The system described by (2.1),(2.2),(2.4)
is given, under Assumptions 2.1, 2.2 and 2.3. The
following control law:

v =































































θ1 ·
η + ρM + cngM (ν̂ + ρν)(ĉr + ρcr)

cngm(ν̂ − ρν)
if smax(x) < 0 (4.4a)

−θ2 ·
η + ρM + cngM (ν̂ + ρν)(ĉl + ρcl)

cngm(ν̂ − ρν)
if smin(x) > 0 (4.4b)

0 otherwise (4.4c)

where:

θ1 ≥ max

{

1,
(ν̂ − ρν)cngmv

max
r

η + ρM + cngM (ν̂ + ρν)(ĉr + ρcr)

}

(4.5a)

θ2 ≥ max

{

1,
(ν̂ − ρν)cngmv

min
l

η + ρM + cngM (ν̂ + ρν)(ĉl + ρcl)

}

(4.5b)

ensures the achievement of a sliding motion on (2.5)
with a boundary layer whose maximum width is given
by (3.9)-(3.11), i.e. guarantees the boundedness of the
system state variables.

The proof is omitted for brevity.

5. SIMULATION RESULTS

To support the theoretical discussion with simulation
data, the described control algorithm has been applied
by simulation on the mechanical system proposed in
(Lewis et al., 1997) representing a robot-like system

with one link 1 . Due to the large presence of mechan-
ical components, indeed, robotics can be in fact con-
sidered a key £eld where the robust compensation of
actuator and sensors nonlinearities should be pursued,
particularly if the intrinsically uncertain knowledge of
the plant model parameters is also considered.

Considering as state variables the angular displace-
ment x1 = θ and its time derivative x2 = θ̇, the
following system model is obtained:
{

ẋ1 = x2

ẋ2 = −α1x2 + α2x
2
2 cos(x1)− α3 sin(x1) + u

where αi = α̂i + ∆αi, i = 1, . . . , 3 are uncertain
parameters whose nominal values are given by α̂1 =
1

T
, α̂2 = m̄a, α̂3 = m̄ga, being m̄ the load mass,

T the motor time constant, a the length and g the
gravitational constant. As in (Lewis et al., 1997) the
following nominal values have been used: T = 1 s,
m̄ = 1 kg, a = 3.5 m. Note that in (Lewis et al.,
1997) the system coef£cients have been considered
exactly known, and no uncertain terms have been
added. The system is supposed to be driven by a
control input u, which, in turn, is the output of a
block containing an actuator nonlinearity (see Fig.1).
The variable actually available for control is therefore
the input v of this latter block. As far as sensors
are concerned, the outputs of n sensors, containing
dead zone nonlinearities, are assumed available (see
Fig.1), the system state vector being not accessible
for direct measurement. The Assumptions 2.2, 2.3
are supposed satis£ed, with µ̂r = 1, µ̂l = 0.7,
β̂r = 0.1 = β̂l = 0.1, ν̂ = 1, ĉr = 0.1, ĉl =

−0.1, m(i)
r = 1, m(i)

l = 0.7, b̂(i)r = b̂
(i)
l = 0.1,

i = 1, 2. A 15% variation has been applied both
to the parameters αi, i = 1 . . . 3 and to all the
coef£cients appearing in the mathematical description
of the considered actuator and sensors nonlinearities,
except for m(i)

r , m(i)
l (according to Assumption 2.3).

Simulations have been performed choosing as initial
conditions x1(0) = 0.5, x2(0) = 0. With reference
to the case of backlash appearing in the actuator and
deadzone affecting sensors (backlash/deadzone), the
controller of Theorem 4 has been used, with η = 0.01,
c1 = 0.1, c2 = 1.5. The results are reported in Fig. 4-5
(state variables)and in Fig.6 (variable v).
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