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Abstract: The problem of robust stabilization is considered for a class of uncertain
linear time—varying systems with multiple time delays. In the paper, the upper bounds
of uncertainties and external disturbances are assumed to be unknown. An adaptation
law is introduced to estimate such unknown bounds, and by employing the updated
values of these unknown bounds a class of memoryless state feedback controllers is
proposed. Based on Lyapunov stability theory and Lyapunov—Krasovskii functional, it
is shown that by making use of the proposed memoryless state feedback controller, the
solutions of the resulting adaptive closed—loop time-delay system can be guaranteed
to be uniformly bounded, and the states are uniformly asymptotically stable.
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1. INTRODUCTION

Many practical control problems, such as those
arising in chemical processes, hydraulics, rolling
mills, economics, involve time—delay systems, con-
nected with measurement of system variables,
physical properties of the equipment, signal trans-
mission (transport delay), and so on (see e.g.
(Kolmanovskii and Nosov, 1986), (Manu and Mo-
hammad, 1987)). The existence of delay is fre-
quently a source of instability of the systems.
On the other hand, it is not avoidable to in-
clude some uncertain parameters and disturbance
in practical control systems due to modeling er-
rors, measurement, errors, linearization approxi-
mations, and so on. Therefore, the problem of
robust stabilization of uncertain dynamical sys-
tems with time delay has received considerable
attention of many researchers (see, e.g. (Cheres
et al., 1989), (Wu, 1997), (Wu, 2000), (Wu and

Mizukami, 1995), (Wu and Mizukami, 1996), and
the references therein).

In the control literature, for uncertain time—delay
systems, where the system state vector is avail-
able, the upper bounds of the vector norms on
the uncertainties are generally supposed to be
known, and such bounds are employed either to
construct some types of stabilizing state feed-
back controllers (see, e.g. (Cheres et al., 1989),
(Wu and Mizukami, 1996)), or to develop some
stability conditions (see, e.g. (Wu, 1997), (Wu
and Mizukami, 1995)). However, in a number of
practical control problems, such bounds may be
unknown, or be partially known. In some cases,
it may also be difficult to evaluate their upper
bounds. Therefore, for such a class of uncertain
time—delay systems whose uncertainty bounds are
partially known, adaptive control schemes should
be introduced to update these unknown bounds.



For such uncertain systems without time—delay,
several types of adaptive robust state feedback
controller have been proposed (see, e.g. (Brogliato
and Neto, 1995), (Choi and Kim, 1993), (Wu,
1999). But, few efforts are made to consider the
problem of adaptive robust control for such un-
certain systems with time—delay.

In this paper, the problem of robust stabilization
is considered for a class of linear time—varying sys-
tems with the delayed state perturbations, uncer-
tainties, and external disturbances. It is assumed
that the upper bounds of the delayed state pertur-
bations, uncertainties, and external disturbances,
are unknown. In the paper, first some adapta-
tion laws is proposed to estimate such unknown
bounds. Then, by making use of the updated
values of these unknown bounds a class of mem-
oryless state feedback controllers is constructed.
Moreover, on the basis of the Lyapunov stability
theory and Lyapunov—Krasovskii functional, it is
shown that by employing the proposed memory-
less state feedback controller, the solutions of the
resulting adaptive closed—loop time-delay system
can be guaranteed to be uniformly bounded, and
the states are uniformly asymptotically stable.

2. PROBLEM FORMULATION

Consider a class of uncertain linear time—varying
systems with multiple time delays described by
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where t € R is the “time”, z(t) € R™ is the current
value of the state, u(t) € R™ is the control input,
A(t), B(t) are continuous matrices of appropriate
dimensions, AA(), AA;(-), j =1,2,...,r, and
AB(-) represent the system uncertainties and are
continuous in all their arguments, and the vector
g(-) is the external disturbance vector, which
is also assumed to be continuous in all their
arguments. Moreover, the uncertain parameters
(v, & ¢, v) € ¥ C RY are Lebesgue measurable
and take values in a known compact bounding set
Q. In addition, the time delays h;, j =1,2,...,r,
are assumed to be any positive constants which
are not required to be known for the system
designer, as shown in Section 3.

The initial condition for system (1) is given by

z(t) = x(t), tE€[to—h, to] (2)

where x(t) is a continuous function on [tg — h, to],
and h := max{hj, j= 1,2,...,r}

Provided that all current values of the states
are available, the memoryless state feedback con-
troller u(t) can be represented by a function:

u(t) = p(z(t),t) (3)

where p(-) R™ x R — R™ is a continuous

function.

Now, the question is to how to synthesize a
memoryless state feedback controller u(¢) that can
guarantee the stability of uncertain time-delay
system (1).

In the paper, the following standard assumptions
are introduced.

Assumption 2.1. The pair {A(-), B(:)} given in
system (1) is uniformly completely controllable.

Assumption 2.2. For all (z, t) € R" x R there
exist continuous matrix functions H(:), H;(-), j =

1,2,...,r, E(-), w(:) of appropriate dimensions
such that
AA() = B(t)H(-), AA;(-) = B(t)H;(:)
AB(-) = BQE(), q() = Bt)w(-

For convenience, the following notations are intro-
duced, which represent the bounds of the uncer-
tainties and external disturbances.
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where || - || is the spectral norm of a matrix
and Apin(+) and Apax(-) denote the minimum and
maximum eigenvalues of the matrix “”, respec-
tively. Moreover, the uncertain p(t), p;(t), p(t),
pq(t) are assumed to be continuous and bounded
for any t € RT.

By employing the notations given above, we in-
troduce for system (1) the following standard as-
sumption.

Assumption 2.3. For every ¢ > tg, u(t) > —1.

Remark 2.1. It is well known that Assumption
2.1 is standard and denotes the internally stabi-
lizability of the nominal system, i.e., the system
in the absence of the delayed state perturbations,
uncertainties, and external disturbances. Assump-
tion 2.2 defines the matching condition about the
uncertainties, and is a rather standard assumption
for robust control problem (see, e.g. (Brogliato
and Neto, 1995), (Cheres et al., 1989), (Wu, 1999),
(Wu, 2000), (Wu and Mizukami, 1993), (Wu and



Mizukami, 1996)). In general, for system with
matched uncertainties, one may always design
some types of stabilizing feedback controllers.
However, this assertion is not valid for systems
with unmatched uncertainties. For such uncertain
systems, one must find some conditions such that
some types of stability can be guaranteed (see,
e.g. (Barmish and Leitmann, 1982), (Chen and
Leitmann, 1987)).

Remark 2.2. Assumption 2.3 is also standard,
and can be regarded as a necessary condition for
robust stability of uncertain systems (see, e.g.
(Cheres et al., 1989), (Choi and Kim, 1993), (Wu
and Mizukami, 1996), and the references relative
to robust stabilization of uncertain systems).

Remark 2.3. The stabilizing state feedback
controllers proposed in the control literature are
based on the fact that the bounds of the uncer-
tainties are known (see, e.g. (Cheres et al., 1989),
(Wu and Mizukami, 1996) for time-delay sys-
tems). When such bounds are unknown, some
updating laws to such unknown bounds must
be introduced to construct adaptive robust con-
trollers. In a recent paper (Wu, 2000), a mem-
oryless adaptive robust state feedback controller
is proposed for a class of uncertain systems with
multiple delayed state perturbations. However,
the uncertain time—delay systems considered in
(Wu, 2000) do not involve the uncertainty of input
gain and external disturbances, and the adaptive
robust controllers proposed in (Wu, 2000) stabilize
the systems only in the sense of uniform ultimate
boundedness. Moreover, it seems that even for
uncertain systems without delayed state pertur-
bations, the problem of stabilization has not well
been discussed yet when the systems include the
uncertainty on input gain and its bound is not
exactly known. In this paper, we want to propose
a class of memoryless adaptive robust state feed-
back controllers for uncertain time—delay system
(1) where the upper bounds of the delayed state
perturbations, uncertainties, and external distur-
bances, are unknown.

On the other hand, it follows from Assumption 2.1
that for any symmetric positive definite matrix
Q € R™™ and any positive constant 7, the
matrix Riccati equation of the form

%Et) + AT(8)P(t) + P(£)A(t)

—nPOBHB (HP() = -Q (4)
has a solution P(t) € R™*", which satisfies

arl < P(t) < aol (5)

for all t € Rt, where a; and as are two positive
numbers (see, e.g., (Ikeda et al., 1972)).

3. MAIN RESULTS

Since the bounds p(t), p;(t), j=1,2,...,7, p(t),
pq(t) have been assumed to be continuous and
bounded for any ¢ € RT, it can be supposed that
there exist some positive constants p*, pj, j =
L,2,...,r, u*, pj, which are defined by

p* = max{p(t) : te R} (6a)
p; = max { p;(t) : t€ R} (6b)
p* = min{put): teRY} > -1 (6¢)
py = max{p,(t) : te R"} (6d)

Here, it is worth pointing out that the constants
P p; 3 =1,2,...,1m, p*, py, are still unknown.
Therefore, such unknown bounds can not be di-
rectly employed to construct the stabilizing state
feedback controllers.

Without loss of generality, we also introduce the
following definition:

™
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where ¥* and ¢* are obviously unknown positive
constants. Moreover, a function fi(z,t) is defined
by

f(z,t) = B (t)P(t)z(t)

Now, for the uncertain time—delay system de-
scribed by (1) we propose the following nonlinear
memoryless adaptive robust state feedback con-
troller:

u(t) = p1(z(t),t) + pa(z(t),1) (8a)

where p1(-) and po(+) are given by the following
functions:

P(e(®).0) = —5 WOBTOPOO (3
_ 9272A(t)ﬂ(ac, t)
I, ) o(t) + e~ P00
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p2(x(t), 1) =

and where € and 3 are any positive constants, and
7 is a positive constant which is chosen such that

Q- 1+rny'r >0 (8d)

In particular, 1/3() and (i() are respectively the
estimate of the unknown * and ¢*, which are
updated by the following adaptive laws:
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where 71 and 7, are any positive constants, 1(to)
and ¢(to) are finite.
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Thus, applying (8) to (1) yields an uncertain
closed-loop system of the form:

dfflgﬂ _ {A(t)—%/ﬁ(t)B(t)BT(t)P(t)} z(t)
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where A

ki(t) = ni(t), ka(t) = ()

On the other hand, letting ¢(t) = o(t) —
and ¢(t) = ¢(t) — ¢*, we can rewrite (9) as the
following error system
d) .
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In the following, by (z, W, <;~5) (t) we denote a solu-
tion of the uncertain closed—loop system and the
error system. Then, the following theorem can be
obtained which shows the globally boundedness of
the solutions of (10) and (11).

Theorem 3.1. Consider the uncertain adap-
tive closed—loop time—delay dynamical system de-
scribed by (10) and (11), which satisfies Assump-
tions 2.1 to 2.3. Then, the solutions (x,,¢)
(t; to, x(to), ¥(to), d(to)) of (10) and (11) are glob-
ally bounded and

() Jim 2(; to,x(to), $(t0), Blto) =0 (122)
) i 0 gy 490

Proof :  For (10) and (11), we fist define a
Lyapunov—Krasovskii functional candidate as fol-
lows.

%(1—%# JTT(HTMe(t)  (13)

where I'"! and ¥(-) are defined as

(-)] _— [%1 0 ]
6() 0 '
Let (x(t), ¥(t)) be the solution of (10) and (11)
for ¢ > to. Then by taking the derivative of V(+)
along the trajectories of (10) and (11), and from

Assumption 2.2 it can be obtained that for any
t 2> to,
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Thus, from (4), (6), and (14) it can be obtained
that for any ¢ > t,
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Notice the fact that for any positive constant
c>0,

1
2ab < ?a2+cb2, Ya, b >0



Then, from (15) it can further be obtained that
for any t > t,
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+(1+ ) | = k)[BT P@z(0)|

n 2
+ 1+
1+,u*( (P7)

| BT @) Pz
_ 2kz<t)||BT<{>P<t)w<t>||z
BT () P()z(t)]| $(t) + gePt-t0)

42 p;ﬂ HBT(t)P(t)a;(t)H]

+§(P§)2)

+* || BT () P(1)a(1)|)”

~ 2 ks (t) | BT (1) P(H)z(t)”
||BT VP(H)z(t)|| o(t) + g Plt-t0)

HL) (vﬁzmt)%ﬂ”mz%(t)%’”)

(16)

)
)a(

where

Q=Q—-n*1+rI>0

Notice that the facts that

b(t) = D)+ 9, () = o(t) + "

it follows from (16) that for all (¢,z,¥) € R X
R™ x R?,

dV(z, ) A 2
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Moreover, letting
t)=[2" (1) €T ()], &:=2(1+u")e
it can be obtained from (17) that for any ¢ > to,

dv(z(t))
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On the other hand, in the light of the definition,
given in (13), of Lyapunov function, there always
exist two positive constants dmin and dmax such
that for any ¢ > t,

n(lz@I) <
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Now, from (18)—(20), we want to show that the
solutions Z(t) of (10) and (11) are uniformly
bounded, and that the state z(¢) converges asymp-
totically to zero.

By the continuity of (10) and (11), it is obvious

that any solution (xv 157 QNS) (t1 tO: x(to), Qz(to)a (5(750))
of the system is continuous.

It follows from (18) and (19) that for any t > to,
0 < H(llz®I)

#(t0)) /v

<As(llEto) ) - / Ss(le(r) ) dr

to

V(&(t))
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where the scalar function 43(||z(¢)||) is defined as

F3(lz@)) = Amin(Q) [lz(®)|? (22)
Therefore, from (21) it can be obtained the fol-
lowing two results. First, taking the limit as ¢
approaches infinity on both sides of inequality (21)
yields

t

Jim 55 (lla(m)dr < F2(ll@(to)l)+E67" (23)

to

On the other hand, from (21) we also have

0 < Hllz®l) < A(lz¢to)ll) +E87" (24)

which implies that Z(¢) is uniformly bounded.
Since Z(t) has been shown to be continuous, it
follows that #(¢) is uniformly continuous, which
implies that x(t) is uniformly continuous. There-
fore, it follows from the definition that 33 (||z(%)||)



is also uniformly continuous. Applying the Bar-
balat lemma to inequality (23) yields that

Jim A5({lz(0)]) = 0 (25)

Furthermore, since 73(-) is a positive definite
scalar function, it is obvious from (25) that we
can have

Jim [la(®)] = 0
which implies that (12a) is satisfied. On the other
hand, from (11) and (12a) we can easily obtain
(12b). n

Remark 3.1. In the paper, we have considered
uncertain systems with multiple constant delays.
That is, the delays h;, 7 =1,2,...,r, have been
assumed to be any positive constants. However,
by employing the method presented in this paper,
one can easily extend the results of this paper to
such a class of uncertain systems with the time—
varying delays h;(t), 7 = 1,2,...,r. In fact, if
assuming that the delays h;(t), j = 1,2,...,r, are
any continuous and bounded nonnegative func-
tions, and their derivatives are less than one,
ie. hj(t) < 1, we can use the same Lyapunov—
Krasovskii functional as the one given in (13) for
dynamical systems with time-varying delays to
obtain similar results.

Remark 3.2. In order to illustrate the validity
of the results obtained in the paper, a numerical
example is also given, and the simulation is carried
out. It is known from the results of the simulation
that the proposed adaptive robust state feedback
controllers stabilize indeed asymptotically the un-
certain time-delay systems. (The details of the
illustrative numerical example and the figures of
the simulation will be displayed in the presenta-
tion.)

4. CONCLUDING REMARKS

The problem of robust stabilization for a class
of systems with the delayed state perturbations,
uncertainties, and external disturbances, has been
discussed. Here, the upper bounds of the delayed
state perturbations, uncertainties, and external
disturbances, are assumed to be unknown. Based
on the updated values of these unknown bounds,
a class of memoryless state feedback controllers
have been constructed. It have been shown that
by employing the proposed controller, the solu-
tions of the resulting adaptive closed—loop time-
delay system can be guaranteed to be uniformly
bounded, and the states are uniformly asymptot-
ically stable in the presence of multiple delayed
state perturbations, uncertainties, and external
disturbances.
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