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Abstract: The robust stability problem of uncertain linear time-delay systems is 
investigated using a refined discretized Lyapunov functional approach. The uncertainty 
under consideration is norm-bounded, and possibly time-varying. A new stability 
criterion is derived. The computational requirement is reduced for the same discretization 
mesh. Examples show that the results obtained by this new criterion significantly 
improve the estimate of the stability limit over some existing results in the literature. 
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1.  INTRODUCTION 
 
The stability problem of time-delay systems has 
received considerable attention in the last two 
decades. The practical examples of time-delay 
systems include engineering, communications and 
biological systems (Hale and Lunel, 1993). The 
existence of delay in a practical system may induce 
instability, oscillation and poor performance (Malek-
Zavarei and Jamshidi, 1987). Current efforts on this 
topic can be divided into two classes: namely 
frequency-domain based and time-domain based 
approaches. 
 
In the time-domain approach, the direct Lyapunov 
method is a powerful tool for studying the stability of 
linear time-delay systems. There are two different 
ideas how one can use this method. They are 

Lyapunov-Krasovskii approach and Lyapunov-
Razumikhin approach. Some results are based on a 
rather simple form of Lyapunov-Krasovskii 
functional, with stability criteria independent of time-
delay, see for example, Han and Mehdi (1999a), 
Kokame et al. (1998), Lee et al. (1994), 
Phoojaruenchanachai and Furuta (1992), Shen et al. 
(1991). A model transformation technique is often 
used to transform a pointwise delay system to a 
distributed delay system, and delay-dependent 
stability criteria are obtained by employing 
Lyapunov-Razumikhin Theorem, see for example, 
Han and Mehdi (1999b), Li and de Souza (1997), 
Park (1999), Su (1994), Su and Huang (1992). 
Although these results are often less conservative 
than the delay-independent results, they can still be 
rather conservative. This can be seen by applying 
these types of criteria to a constant time-delay system 
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without uncertainty and comparing with analytical 
results (Gu 1997). In addition to the conservatism in 
applying Razumikhin theorem, the model 
transformation may introduce additional poles that 
are not present in the original system, and one of 
these additional poles may cross the imaginary axis 
before any of the poles of the original system do as 
the delay increases from zero (Gu and Niculescu 
2000, Kharitonov and Melchor-Aguilar 2000). 
Moreover, there are no obvious ways to obtain less 
conservative results even if one is willing to commit 
more computational effort to the problem. 
Furthermore, most criteria do not reduce to a 
necessary and sufficient condition when applied to 
uncertainty-free systems. 
 
For a linear system with a constant time-delay, it has 
been proven that the existence of a generalized 
quadratic form Lyapunov-Krasovskii functional is 
necessary and sufficient for the stability of an 
uncertainty-free time-delay system (Huang 1989). 
The related weight matrices have to satisfy a 
complicated system of algebraic, ordinary and partial 
differential equations. A solution construction for this 
system and the following analysis of this system is a 
very difficult task. However, a piecewise linear 
discretization scheme has been proposed to enable 
one to write the stability criterion in an LMI form 
(Gu 1997, 1999a). The results have been improved 
by allowing some parameters to depend on 
uncertainties, with the resulting formulation no more 
complicated by eliminating some free variables 
appearing in the resulting LMI (1999b). Recently, a 
refinement over Gu (1999b) has been proposed in Gu 
(2001a) which significantly reduces conservatism 
and shows significant improvements over the 
existing results even under very coarse discretization. 
For uncertainty-free systems, the analytical results 
can be approached with fine discretization. 
 
In this paper, the robust stability problem of linear 
time-delay systems with norm-bounded, and possibly 
time-varying is investigated by using the refined 
discretized Lyapunov functional approach (Gu 
2001a). As compared to Han and Gu (2001), the new 
criterion requires less computation, converges to the 
analytical solution much faster for systems without 
uncertainty, and is much less conservative for 
uncertain systems. 
 
Notation. Let max ( )Wσ  denote the maximum 
singular value of matrix W . For a symmetric matrix 
W , " 0W > " denotes that W  is positive definite 
matrix. 
 

2. PROBLEM STATEMENT 
 
Consider the robust stability problem of time-delay 
system 
 

( ) [ ( )] ( ) [ ( )] ( )x t A A t x t B B t x t r= + ∆ + + ∆ −�       (1) 
 
with initial condition 

 

( ) ( )x t tφ= , [ ,0]t r∀ ∈ −                        (2) 
 

where ( ) nx t ∈ �  is the state, r  is a constant time 

delay, ( )tφ  is the initial condition, n nA ×∈ �  and 
n nB ×∈ �  are known real constant matrices which 

describe the nominal system of Eq. (1), and ( )A t∆  
and ( )B t∆  are real matrix functions representing 
time-varying parameter uncertainties. The 
uncertainties are assumed in the form 

 

[ ( ) ( )] ( )[ ]a bA t B t LF t E E∆ ∆ =             (3) 
 

where ( ) p qF t ×∈ �  is an unknown real and possibly 
time-varying matrix with Lebesgue measurable 
elements satisfying 

 

max ( ( )) 1F tσ ≤                          (4) 
 

and L , aE  and bE  are known real constant matrices 
which characterize how the uncertainty enters the 
nominal matrices A and B. 
 
Define � as the set of continuous n

�  valued function 
on the interval [ ,  0]r− , and let tx ∈ � be a segment 
of system trajectory defined as 
 

( ) ( )tx x tθ θ= + , 0r θ− ≤ ≤ .            (5) 
 
In this paper, we will attempt to formulate a 
practically computable criterion for robust stability of 
uncertain system described by (1) to (4). 
 

3. MAIN RESULT 
 
Choose a Lyapunov-Krasovskii functional ( )V φ  of a 
quadratic form 
 

:V  � ��  
01

( ) (0) (0) (0) ( ) ( )
2

T T

r
V P Q dφ φ φ φ ξ φ ξ ξ

−
= + �  

0 01
[ ( ) ( , ) ( ) ]

2
T

r r
R d dφ ξ ξ η φ η η ξ

− −
+ � �       (6) 

 
where 

 
n nP ×∈ � , TP P=   

: [ ,0] n nQ r ×− →�   
:[ ,0] n nS r ×− →� , ( ) ( )TS Sξ ξ=   
: [ ,0] [ ,0] n nR r r ×− × − →� , ( , ) ( , )TR Rη ξ ξ η= . 

 
It is well known that (Hale and Lunel 1993) 

 
Theroem 1. The system (1)-(2) is asymptotically 
stable if there exists a quadratic Lyapunov-



Krasovskii functional V of the form (6) such that for 
some 0ε > , it satisfies  

 

( ) (0) (0)TV φ εφ φ≥  
 

and its derivative along the solution of (1) satisfies 
 

( ) (0) (0)TV φ εφ φ≤ −�  

for any φ∈ �, where  

( ) ( )
tt x

d
V V x

dt φφ
∆

==� . 

Choose Q, R and S to be continuous piecewise linear, 
i.e.,  

   1 1( ) ( ) (1 )i
i i iQ Q h Q Qα δ α α α

∆

− −= + = − +  

1 1( ) ( ) (1 )i
i i iS S h S Sα δ α α α

∆

− −= + = − +                 (7) 

   1 1( , ) ( , )ij
i jR h h Rδ α δ η α η− −+ + =  

1, 1 , 1

1, 1 1,

(1 ) ( ) , 

(1 ) ( ) , 
i j ij i j

i j ij i j

R R R

R R R

α η α η α η
η α η α α η

∆ − − −

− − −

− + + − ≥��=� − + + − <��
 

 
for 0 1α≤ ≤ , 0 1η≤ ≤ , where 
 

i r ihδ = − + , 0,  1,  2,  ,  i N= � ; /h r N=  
i.e., N is the number of divisions of the interval 
[ ,  0]r− , and h is the length of each division. 

 
Based on Theorem 1, noting that (31) in Proposition 
3 is implied by (46) in Proposition 4 and combining 
(32) in Proposition 3 and (46) in Proposition 4 in Gu 
(2001a), the following result was easily obtained. 
 
Lemma 1 (Gu 2001a). For piecewise linear Q, S and 
R as described by (7) and for ( )A t∆  and ( )B t∆  
satisfying (3), system (1)-(2) is robustly stable if the 
following LMIs hold. 

 

01T

P Q

Q S R
h

� �
� � >
� �+
� �� �

�

� � �

                        (8) 

11 12 1 1

12 22 2 2
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1 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1( ) 0( ) ( ) 0

3
( ) ( ) 0

s a

T s a

sT sT
d d

aT aT
d

G t G t D t D t
G t G t D t D t

t D t D t S R
h

D t D t S
h

� �−
� �−� �
� �Ξ = >+� �
� �
� �
� �� �

(9) 

 

for ∆A t( ) and ∆B t( ) satisfying (3), where  

0 1 2 1(      )N NS diag S S S S S−=� �  

0 1[       ]NQ Q Q Q=� �  

00 01 0

10 11 1

0 1

N

N

N N NN

R R R
R R R

R

R R R

� �
� �

= � �
� �
� �� �

�
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� � � �

�

 

{11( ) [ ( )] [ ( )]TG t P A A t A A t P= − + ∆ + + ∆  

                 }T
N N NS Q Q+ + +  

12 0( ) [ ( )]G t P B B t Q= + ∆ −   
22 0( )G t S=  

1 2( , , , )d d d dNS diag S S S= �  

S
h

S Sdi i i= − −
1
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1, 1

1
( )dij ij i jR R R

h − −= − ; ,  1,  2,  ,  i j N= �  

1 2( ) [ ( )  ( )    ( )]s s s s
j j j jND t D t D t D t= � ; 1,  2;j =  

1 1 1

1 1
( ) [ ( )] ( ) ( )

2
s T
i i i i iD t A A t Q Q Q Q

h− −= − + ∆ + + −  

              , 1,

1
( )

2
T T
i N i NR R −− +  

2 1 ,0 1,0

1 1
( ) [ ( )] ( ) ( )

2 2
s T T T
i i i i iD t B B t Q Q R R− −= − + ∆ + + +  

1 2( ) [ ( )  ( )    ( )]a a a a
j j j jND t D t D t D t= � ;  1,  2;j =  

1 1 , 1,

1 1
( ) [ ( )] ( ) ( )

2 2
a T T T
i i i i N i ND t A A t Q Q R R− −= + ∆ − + −  

2 1 ,0 1,0

1 1
( ) [ ( )] ( ) ( )

2 2
a T T T
i i i i iD t B B t Q Q R R− −= + ∆ − − − . 

 
For polytopic uncertainty, it is known from Gu 
(2001a) that (9) only needs to be satisfied at all the 
vertices. For norm-bounded, and possibly time-
varying, uncertainty, we may obtain 
 
Theorem 2. The uncertain system described by (1) to 
(4) is robustly stable if there exist real n n×  matrices 

TX X= , iY , T
i iW W=  ( 0,  1,  2,  ,  i N= � ) and 

T
ij jiZ Z=  ( ,  0,  1,  2,  ,  i j N= � ) and a scalar 

0λ > such that the following LMIs are satisfied  
 

01T

X Y

Y W Z
h

� �
� � >
� �+
� �� �

�

� � �

                    (10) 

00 01 0 0
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12 22 2 2

0 1 2
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  0  
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1
0

3
0
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T s a

T s a

sT sT sT
d d
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d

H H

H HH

H H

W Z
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� �− Π Π
� �

−− Π Π� �
� �− Π Π� � >� �

Π Π Π +� �
� �
� �

Π Π Π� �� �� �

  (11) 

where 
  

X Pλ= , i iY Qλ= , i iW Sλ= , ( 0,  1,  2,  ,  i N= � ) 
ij ijZ Rλ=  ( , 0,  1,  2,  ,  i j N= � )         (12) 

and  



0
( ) 0( )ij ij F tG G t == ; ,  1,  2i j =  

0
( ) 0( )s s

j j F tD D t == ; 0
( ) 0( )a a

j j F tD D t == ; 1,  2j =  

Z Rλ=� � ; Y Qλ= �� ; W Sλ= ��  

00H I= ; 01
TH L X= ; 0

11 11
T
a aH G E Eλ= −  

0
12 12

T
a bH G E Eλ= + ; 0

22 22
T
b bH G E Eλ= −  

d dW Sλ= ; d dZ Rλ=                                            (13) 

1 2[       ]s s s s
j j j jNΠ = Π Π Π� ; 0,  1,  2j =  

0 1

1
( )

2
s T

i i iL Y Y −Π = − + ; 1 1
s s
i iDλΠ = ; 2 2

s s
i iDλΠ =  

1 2[       ]a a a a
j j j jNΠ = Π Π Π� ; 0,  1,  2j =  

0 1

1
( )

2
a T

i i iL Y Y −Π = −  

1 1
a a
i iDλΠ = ; 2 2

a a
i iDλΠ = . 

 
Proof. See the full version of the paper (Han and Yu 
2001). 
 
Remark 1. Through some transformation, rewrite 
(14) in Han and Gu (2001) as 

00 01 0 0

11 1201 1 1

12 22 2 2

0 1 2

0 1 2

0

  0  
0

1
0

1
0

s a

T s a

T s a

sT sT sT
d d

aT aT aT
d

H H

H HH

H H

W Z
h

W
h

� �− Π Π
� �

−− Π Π� �
� �− Π Π� � >� �

Π Π Π +� �
� �
� �

Π Π Π� �� �� �

   (14) 

where 

1 01
( )

2
s
j j jΠ = − Γ + Γ , 1 01

( )
2

a
j j jΠ = − Γ − Γ  ; 0,1, 2j =  

where k
jΓ  ( 0,1, 2j = ; 0,1k = ) are defined in Han 

and Gu (2001). By Corollary 1 in Han and Gu 
(2001), it can be concluded that the uncertain system 
described by (1) to (4) is robustly stable if there exist 
real n n×  matrices TX X= , iY , T

i iW W=  

( 0,1, 2, ,i N= � ) and T
ij jiZ Z=  ( ,  0,1, 2, ,i j N= � ) 

such that (14),  

00 0Z > , 0dZ >                         (15) 

01 ˆT

X Y

Y W Z
h

� �
� � >
� �+
� �

�

� �

                     (16) 

where 

( )0 1 2 2 1
ˆ 2       2N N NW diag W W W W W W− −= � . 

 
Theorem 2 is less restrictive than this result in view 
of the fact that (14) is equivalent to (11) if the 
coefficient 3 in the entry (5,5) is replaced by 1. In 
addition, the constraints 00 0Z >  and 0dZ >  are no 
longer needed. Condition (10) is less restrictive than 
(16) due to the coefficient 2 in the first and last 

entries of Ŵ . Therefore, Theorem 2 is much less 
conservative, and requires less computation. 

 
4. EXAMPLES 

 
To illustrate the improvement of the method over that 
in Han and Gu (2001), the following examples are 
presented. 
Example 1. Consider the uncertain time-delay 
system 
 

( ) [ ( )] ( ) [ ( )] ( )x t A A t x t B B t x t r= + ∆ + + ∆ −�      (17) 
 
where 

2 0
0 0.9

A
−� �= � �−� �

, 
1 0
1 1

B
−� �= � �− −� �

 

 
and ( )A t∆  and ( )B t∆  are unknown matrices 

satisfying ( )A t α∆ ≤  and ( )B t α∆ ≤ , t∀ . The 
above system is of the form of Eq. (1) with L Iα=  
and a bE E I= = . 

 
For 0.2α = , the maximum time-delay rmax  for 
stability is estimated by using the method in Han and 
Gu (2001) for different N. The results are listed in the 
following table 

 

N 1 2 5 10 

Han & Gu 
(2001) 

2.78 2.97 3.09 3.12 

 
Using the method in this paper, the results are listed 
in the following table 

 

N 1 2 3 

This paper 3.098 3.132 3.133 
 

It is easy to see that the results in this paper 
significantly improve the ones in Han and Gu (2001). 
The results here are much less conservative than 
those as surveyed in de Souza and Li (1999). 
 
Now we consider the effect of the uncertainty bound 
α  on the maximum time-delay for stability maxr . 
The following table illustrates the numerical results 
for 1N =  and different α . We can see that as 

0α → , the stability limit for delay approaches the 
uncertainty-free case in Gu (1999a) and Gu (2001a). 
As α  increases, maxr  decreases.  
 

α  0.00 0.10 0.20 
Han & Gu (2001) 5.30 3.77 2.78 

This paper 6.05 4.26 3.09 
α  0.30 0.40 0.50 

Han & Gu (2001) 2.12 1.67 1.33 
This paper 2.33 1.81 1.43 

α  0.60 0.70 0.80 
Han & Gu (2001) 1.08 0.87 0.69 

This paper 1.14 0.91 0.70 



 
It is clear that the method in this paper provides a 
larger estimate of maxr  than the one in Han and Gu 
(2001). 
 
Example 2. Consider the uncertain time-delay 
system 
 

( ) [ ( )] ( ) [ ( )] ( )x t A A t x t B B t x t r= + ∆ + + ∆ −�     (18) 
 

where A and B are non-diagonal matrices and are 
given as follows 
 

3 2.5

1 0.5
A

− −� �= � �
� �

, 
1.5 2.5

0.5 1.5
B

� �= � �− −� �
 

 

and ( )A t∆  and ( )B t∆  are unknown matrices 

satisfying ( )A t α∆ ≤  and ( )B t α∆ ≤ , t∀ . This 
system is of the form of Eq. (1) with L Iα=  and 

a bE E I= = . 
 

For the nominal system (18), i.e. 0.0α = , the 
maximum time-delay for stability, maxr , is 2.4184 
according to Chen et al. (1994). Using the method in 
Han and Gu (2001), maxr  is estimated in the 
following table for different N. 
 

N 1 2 5 10 
Han, Gu 
(2001) 

2.2085 2.3278 2.3991 2.4133 

 
Using the method in this paper, the results for 
different N are listed in the following  

 

N 1 2 3 
This paper 2.4021 2.4174 2.4183 
 

It’s clear that the convergence to the analytical 
solution is greatly accelerated. 

 
For 0.2α = , the maximum time-delay maxr  for 
stability is estimated by using the method in Han and 
Gu (2001) for different N. The results are listed in the 
following table 
 

N 1 2 5 10 
Han, Gu 
(2001) 

1.2206 1.2657 1.2884 1.2925 

 
Using the method in this paper, the results are listed 
in the following table 

 

N 1 2 3 
This paper 1.2904 1.2937 1.2939 

 
It is clear that the new method is much less 
conservative. 

 

The effect of the uncertainty bound α  on the 
maximum time-delay for stability maxr  is also 
studied. The numerical results for 1N =  and 
different α  are estimated in the following table. It 
again shows that as 0α → , the stability limit for 
delay approaches the uncertainty-free case in the 
above tables. As α  increases, maxr  decreases.  
 

α  0.00 0.05 0.10 
Han & Gu (2001) 2.2084 1.8758 1.4999 

This paper 2.4021 2.0265 1.7276 
α  0.15 0.20 0.25 

Han & Gu (2001) 1.3963 1.2206 1.0743 
This paper 1.4869 1.2904 1.1274 

α  0.30 0.35 0.40 
Han & Gu (2001) 0.9499 0.8357 0.7263 

This paper 0.9897 0.8708 0.7647 
 

It is clear that the results in this paper indeed 
signficantly improve the ones derived in Han and Gu 
(2001). 

 
5. CONCLUSION 

 
The problem of robust stability of linear time-delay 
systems with norm-bounded, and possibly time-
varying, uncertainty has been addressed. A new 
stability criterion has been obtained. Numerical 
examples have shown significant improvements over 
some existing results. 
 

ACKNOWLEDGEMENT 
 

The first author would like to express his gratitude to 
Professor Keqin Gu of Southern Illinois University at 
Edwardsville, Illinois, U.S.A., for discussions on 
related topics on the discretized Lyapunov functional 
approach. 
 
 

REFERENCES 
 
 
Boyd, S., Ghaoui, L. El, Feron, E. and Balakrishnan, 

V. (1994). Linear Matrix Inequalities in Systems 
and Control Theory. Philadelphia, PA: SIAM. 

 
Chen, J., Gu, G., and Nett, C. N. (1994). A new 

method for computing delay margins for stability 
of linear delay systems. In Proceedings of the 33rd 
IEEE Conference on Decision and Control, Lake 
Buena Vista, FL, (pp. 433-437).  

 
Gu, K. (1997). Discretized LMI set in the stability 

problem of linear uncertain time-delay systems. 
International Journal of Control, 68, 923-934.  

 
 
 
 



Gu, K. (1999a). A generalized discretization scheme 
of Lyapunov  functional in the  stability problem of 
linear uncertain time-delay systems. International 
Journal of Robust and Nonlinear Control,  9, 1-14.  

 
Gu, K. (1999b), Partial solution of LMI in stability 

problem of time-delay systems. In Proceedings of 
the 38th IEEE Conference on Decision and 
Control, Phoenix, (pp.227-232). 

 
Gu, K. (2001a). A further refinement of discretized 

Lyapunov functional method for the stability of 
time-delay systems. International Journal of 
Control, 74, 967-976. 

 
Gu, K., and Niculescu, S.-I. (2000). Additional 

dynamics in transformed time-delay systems. IEEE 
Transactons on Automatic Control, 45, 572-575. 

 
Gahinet, P., Nemirovski, A., Laub, A. J., and Chilali, 

M. (1995). LMI Control Toolbox for Use with 
MATLAB, Natick, MA: MathWorks. 

 
Hale, J. K., and Verduyn Lunel, S. M. (1993). 

Introduction to Functional Differential Equations, 
New York: Springer-Verlag. 

 
Han, Q.-L., and Gu, K. (2001). On robust stability of 

time-delay systems with norm-bounded 
uncertainty. IEEE Transactions on Automatic 
Control, 46, 1426-1431. 

 

Han, Q.-L., and Mehdi, D. (1999a). Robust H∞  
controller synthesis for uncertain systems with 
multiple time-varying delays: An LMI approach. In 
Proceedings of the 14th IFAC World Congress, 
Beijing, P. R. China, (vol. C, pp. 271-276). 

 
Han, Q.-L., and Mehdi, D. (1999b). Robust 

stabilization for uncertain time-varying delay 
constrained systems with delay-dependence. 
International Journal of Applied Mathematics and 
Computer Science, 9, 293-311. 

 
Han, Q.-L., and X. Yu. Improved estimate of time-

delay for stability of linear systems. Internal 
Report, Central Queensland University, 2001. 

 
Huang, W. (1989). Generalization of Liapunov’s 

theorem in a linear delay system. Journal of 
Mathematical Analysis and Applications, 142, 83-
94. 

 
Kharitonov, V. L., and Melchor-Aguilar, D. A. 

(2000). On delay-dependent stability conditions. 
Systems & Control Letters, 40, 71-76. 

 
Kokame, H., Kobayashi, H., and Mori, T. (1998). 

Robust H∞  performance for linear delay-
differential systems with time-varying 
uncertainties. IEEE Transactions on Automatic 
Control, 43, 223-226. 

Lee, J. H., Kim, S. W., and Kwon, W. H. (1994). 
Memoryless H∞  controller for state delayed 
systems. IEEE Transactions on Automatic Control, 
39, 159-162.  

 
Li, X., and de Souza, C. E. (1997). Criteria for robust 

stability and stabilization of uncertain linear 
systems with state delay. Automatica, 33, 1657-
1662.  

 
Malek-Zavarei, M., and Jamshidi, M. (1987). Time 

Delay Systems: Analysis, Optimization and 
Applications. Amsterdam: North-Holland. 

 
Park, P. (1999). A delay-dependent stability criterion 

for systems with uncertain time-invariant delays. 
IEEE Transactions on Automatic Control, 44, 876-
877.  

 
Phoojaruenchanachai, S., and Furuta, K. (1992). 

Memoryless stabilization of uncertain linear 
systems including time-varying state delays. IEEE 
Transactions on Automatic Control, 37, 1022-
1026.  

 
de Souza, C. E., and Li, X. (1999). Delay-dependent 

robust H∞  control of uncertain linear state-
delayed systems. Automatica, 35, 1313-1321.  

 
Shen, J.-C., Chen, B.-S., and Kung, F.-C. (1991). 

Memoryless stabilization of uncertain dynamic 
delay systems: Riccati equation approach. IEEE 
Transactions on Automatic Control, 36, 638-640.  

 
Su, J.-H. (1994). Further results on the robust 

stability of linear systems with a single delay. 
Systems & Control Letters, 23, 375-379.  

 
Su, T.-J., and Huang, C. G. (1992). Robust stability 

of delay dependence for linear uncertain systems. 
IEEE Transactions on Automatic Control, 37, 
1656-1659. 

 


