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Abstract: This paper considers the stability problem of linear delay-differential systems 
of neutral type. A discretized Lyapunov functional approach is developed. The resulting 
stability criteria are formulated in the form of a linear matrix inequality. For nominal 
systems, the analytical results can be approached with fine discretization. For uncertain 
systems, the new approach is much less conservative. Numerical examples show 
significant improvement over approaches in the literature. Copyright © 2002 IFAC 
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1.  INTRODUCTION 
 
The problems of stability and stabilization of delay-
differential systems of neutral type have received 
considerable attention in the last two decades, see for 
example, Byrnes et al. (1984); Spong (1985); Hale 
and Lunel (1993); Logemann and Townley (1996). 
The practical examples of neutral delay-differential 
systems include the distributed networks containing 
lossless transmission lines (Brayton, 1966), and 
population ecology (Kuang, 1993). Some earlier 
results are based on matrix measure and matrix norm 
(Hu and Hu, 1996; Park and Won, 1999) or a simple 
Lyapunov functional (Slemrod and Infante, 1972). 
The resulting criteria are independent of delay. 
Although these criteria are easy to use, they are often 
overly conservative for practical applications.  
 
Delay-dependent stability results, which take the 
delay into account, are usually less conservative than 
the delay-independent stability ones. A model 
transformation technique is often used to transform a 

pointwise delay system to a distributed delay system, 
and delay-dependent stability criteria are obtained, 
see for example, Pak and Won (2000), Lieu (2001), 
Niculescu (2001), Ni and Han (2001), Han (2001, 
2002). The model transformation may introduce 
additional dynamics, i.e. additional poles that are not 
present in the original system, and one of these 
additional poles may cross the imaginary axis before 
any of the poles of the original system do as the delay 
increases from zero (Gu and Niculescu 2000; 
Kharitonov and Melchor-Aguilar 2000). Moreover, 
there are no obvious ways to obtain less conservative 
results even if one is willing to commit more 
computational effort to the problem.  
 
For a linear system of retarded type with a constant 
time-delay, it has been proven that the existence of a 
more general quadratic form Lyapunov-Krasovskii 
functional is necessary and sufficient for the stability 
of an uncertainty-free time-delay system (Huang 
1989). A discretized Lyapunov functional approach 
has been proposed to enable one to write the stability 
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criterion in an LMI form (Gu 1997, 1999a, 1999b, 
2001). The criteria have shown significant 
improvements over the existing results even under 
very coarse discretization. The results in Gu (1999b) 
have been extended to the cases where the 
uncertainty is norm-bounded (Han and Gu 2001).  
 
In this paper, we develop the discretized Lyapunov 
functional approach to study the stability of linear 
delay-differential systems of neutral type. Stability 
criteria are formulated in the form of linear matrix 
inequalities (LMIs). Numerical examples are 
presented to illustrate the effectiveness of the 
approach. 
 
Notation. For a symmetric matrix W , " 0W > " 
denotes that W  is positive definite matrix. Similarly, 
"≥", "<" and "≤" denote positive semi-definiteness, 
negative definiteness and negative semi-definiteness. 
I denotes an identity matrix of appropriate 
dimension.  
 

2. PROBLEM STATEMENT 
 
Consider the linear delay-differential system of 
neutral type 
 

( ) ( ) ( ) ( ) ( ) ( )x t Cx t r A t x t B t x t r− − = + −� �         (1) 
 
with initial condition 

 

( ) ( )x t tφ= , [ ,0]t r∀ ∈ −                        (2) 
 

where ( ) nx t ∈ �  is the state, 0r >  is a constant time 

delay, ( )tϕ  is the initial condition, n nC ×∈ �  is a 

constant matrix, ( ) n nA t ×∈ �  and ( ) n nB t ×∈ �  are 
uncertain matrices, which are unkown and possibly 
time-varying, but are known to be bounded by some 
compact set Ω , i.e., 

 

( ) 2( ) ( ) n nA t B t ×∈Ω ⊂ � , for all (0,  )t ∈ ∞      (3) 
 

Define � as the set of continuous n
�  valued function 

on the interval [ ,  0]r− , and let tx ∈ � be a segment 
of system trajectory defined as 
 

( ) ( )tx x tθ θ= + , 0r θ− ≤ ≤ .            (4) 
 
In this paper, we will attempt to formulate some 
practically computable criteria for robust stability of 
uncertain system described by (1) to (3). 
 

3.  PRELIMINARIES 
 

Define the operator 
 

(0) ( )C rφ φ φ= − −�                     (5) 
 

Choose a Lyapunov-Krasovskii functional ( , )V t φ  of 
a quadratic form 

( , )V t φ :  ×� ���  

01
( , ) ( ) ( ) ( ) ( ) ( )

2
T T

r
V t P Q dφ φ φ φ ξ φ ξ ξ

−
= + �� � �  

       
0 01

( ) ( , ) ( )
2

T

r r
R d dφ ξ ξ η φ η η ξ

− −
� �+
� �� �� �  

01
( ) ( ) ( )

2
T

r
x t S x t dξ ξ ξ ξ

−
+ + +�               (6) 

where 
 

n nP ×∈ � , TP P=   
: [ ,0] n nQ r ×− →�   
:[ ,0] n nS r ×− →� , ( ) ( )TS Sξ ξ=   
: [ ,0] [ ,0] n nR r r ×− × − →� , ( , ) ( , )TR Rη ξ ξ η=  

 
and Q, R and S are Lipschitz matrix functions with 
piecewise continuous derivatives. 
 
It is well known that (Hale and Lunel 1993) 
 
Theroem 1. The system (1)-(3) is asymptotically 
stable if the operator �  is stable and there exists a 
quadratic Lyapunov-Krasovskii functional V of the 
form (6) such that for some 0ic >  ( 1,  2i = ), it 

satisfies  

1( ) ( ) ( , )Tc V tφ φ φ≤� �                    (7) 
 

and its derivative along the solution of (1) satisfies 
 

2( , ) (0) (0)TV t cφ φ φ≤ −�                    (8) 
 

for any φ∈ � , where 

( , ) ( , )
tt x

d
V t V t x

dt φφ
∆

==� . 

 
Proof. See the full version of the paper (Han and Yu  
2001).  
 
Choose Q, R and S to be continuous piecewise linear, 
i.e.,  

   1 1( ) ( ) (1 )i
i i iQ Q h Q Qα δ α α α

∆

− −= + = − +  

1 1( ) ( ) (1 )i
i i iS S h S Sα δ α α α

∆

− −= + = − +                (9) 

   1 1( , ) ( , )ij
i jR h h Rδ α δ η α η− −+ + =  

1, 1 , 1

1, 1 1,

(1 ) ( ) , 

(1 ) ( ) , 
i j ij i j

i j ij i j

R R R

R R R

α η α η α η
η α η α α η

∆ − − −

− − −

− + + − ≥��=� − + + − <��
 

 

for 0 1α≤ ≤ , 0 1η≤ ≤ , where 
 

i r ihδ = − + , 0,  1,  2,  ,  i N= � ; /h r N=  
i.e., N is the number of divisions of the interval 
[ ,  0]r− , and h is the length of each division. 
 

4.  LYAPUNOV-KRASOVSKII FUNCTIONAL 
CONDITION 



With the choice of piecewise linear functions, 
condition (7) can be written in a linear matrix 
inequality.  

 
Proposition 1. For piecewise linear Q, S and R as 
described by (9), there exists a 1 0c >  such that the 

Lyapunov-Krasovskii functional satisfies (7) if  

0S >�                                  (10) 
and 

01T

P Q

Q S R
h

� �
� � >
� �+
� �

�

� � �

                     (11) 

where 

0 1 1(    )N NS diag S S S S−=� �  

00 01 0

10 11 1

0 1

N

N

N N NN

R R R
R R R

R

R R R

� �
� �

= � �
� �
� �� �

�
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� � � �

�

 

( )0 1,  ,  ,  NQ Q Q Q=�

�  
 
Proof. See the full version of the paper (Han and Yu 
2001). 
 

5. LYAPUNOV-KRASOVSKII DERIVATIVE 
CONDITION 

 
Similar to (7), condition (8) can also be written in a 
linear matrix inequality. We have the following 
proposition.  

 
Proposition 2. For piecewise linear Q, S and R as 
described by (9), equation (8) is satisfied for some 

2 0c > , and arbitrary φ∈ �  if 

11 12 1 1

12 22 2 2

1 2

1 2

( ) ( )

( ) ( )

1( ) 00

3
0

s a

T s a

sT sT
d d
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S
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Ξ = >� �Γ Γ +

� �
� �
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   (12) 

for all ( )( ) ( )A t B t ∈Ω , where 

11( ) ( ) ( )T T
N N NG t PA t A t P S Q Q= − − − − −

12 0( ) ( ) ( )T T
NG t PB t A t PC Q C Q= − − −  

22 0 0 0( ) ( ) ( )T T T TG t C PB t B t PC C Q Q C S= + − − +
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1, 1

1
( )dij ij i jR R R

h − −= − ; ,  1,  2,  ,  i j N= �  

1 2[       ]s s s s
j j j jNΓ = Γ Γ Γ� ; 1,  2;j =  

1 1 1

1 1
( )( ) ( )

2
s T
i i i i iA t Q Q Q Q
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        , 1,

1
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2
T T
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2 1 1
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2
s T T
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         ,0 1,0

1
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2
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1 2[       ]a a a a
j j j jNΓ = Γ Γ Γ� ; 1,  2;j =  

1 1 , 1,

1 1
( )( ) ( )

2 2
a T T T
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2 1 ,0 1,0

1 1
( )( ) ( )

2 2
a T T T

i i i i iB t Q Q R R− −Γ = − − + . 
1, 2, ,i N= �  

Proof. See the full version of the paper (Han and Yu 
2001). 
 

6.  STABILITY CRITERION 
 

Now we consider the stability of the operator � . 
According to Definition 3.1. in Chapter 9 in Hale and 
Lunel (1993), �  is stable if the considered 
difference system (0) ( ) 0C rφ φ φ= − − =�  is 
asymptotically stable. A sufficient condition is that 
there exists a matrix 0K >  such that  

0TC KC K− <                         (13) 
 

From the above discussion, we now state and 
establish the following theorem. 
 
Theroem 2. The system (1)-(3) is asymptotically 
stable if there exist real matrices 0TP P= > , iQ , 

iS , ( 0,  1,  2,  ,  i N= � ), ijR  ( , 0,  1,  2,  ,  i j N= � ) 

and 0K >  such that 0 0S > , (11), (13) and (12) for 

all ( )( ) ( )A t B t ∈Ω  are satisfied. 
 

Proof. See the full version of the paper (Han and Yu 
2001). 
 
When 0C ≡ , system (1) becomes the following 
system of retarded type 

 

( ) ( ) ( ) ( ) ( )x t A t x t B t x t r= + −�           (14) 
(12) reduces to  

 

11 12 1 1

12 22 2 2

1 2

1 2

( ) ( )

( ) ( )

1 00

3
0

retarded retarded s a

retardedT retarded s a

sT sT
d d

aT aT
d

G t G t

G t G t

S R
h

S
h

� �− Γ Γ
� �
− Γ Γ� �

� �
>� �Γ Γ +

� �
� �

Γ Γ� �
� �� �

 

(15) 
which is (46) in Gu (2001), where 

11 ( ) ( ) ( )retarded T T
N N NG t PA t A t P S Q Q= − − − − −  

12 0( ) ( )retardedG t PB t Q= −  



22 0( )retardedG t S= . 
 
From Theorem 2, the following corollary is easily 
obtained. 

 
Corollary 1 (Gu 2001). System (14) (2) and (3) is 
asymptotically stable there exist real matrices 

0TP P= > , iQ , iS , ( 0,  1,  2,  ,  i N= � ) and ijR  

( , 0,  1,  2,i j = ,  N� ) such that (11) and (15) for all 

( )( ) ( )A t B t ∈Ω  for all are satisfied. 
 

Proof. See the full version of the paper (Han and Yu 
2001). 
 

7. STABILITY OF SYSTEMS WITH NORM 
BOUNDED UNCERTAINTY 

 
For polytopic uncertainty, it is clearly sufficient that 
(12) only needs to be satisfied at all the vertices. Now 
we consider the norm bounded uncertainty described 
by  

( ) ( )A t A A t= + ∆ , ( ) ( )B t B B t= + ∆           (16) 
where  

[ ( ) ( )] ( )[ ]a bA t B t LF t E E∆ ∆ =             (17) 

where ( ) p qF t ×∈ �  is an unknown real and possibly 
time-varying matrix with Lebesgue measurable 
elements satisfying 
 

max ( ( )) 1F tσ ≤                           (18) 
 
and L , Ea  and Eb  are known real constant matrices 
which characterize how the uncertainty enters the 
nominal matrices A and B. 

 
Now we can state and establish the following result. 

 
Theroem 3. The system described by (1) and (2), 
with uncertainty by (16) to (18) is asymptotically 
stable if there exist real n n×  matrices 0TX X= > , 

iY , T
i iW W=  ( 0,  1,  2,  ,  i N= � ), T

ij jiZ Z=  

( ,  0,  1,  2,  ,  i j N= � ), 0K >  and a scalar 0λ >  

such that 0 0W > , (13) and the following LMIs are 
satisfied  

01T

X Y

Y W Z
h
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� � >
� �+
� �

�
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                 (19) 
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W Z
h
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� �Π Π Π +
� �
� �Π Π Π� �� �

 (20) 

where  
 

X Pλ= , i iY Qλ= , i iW Sλ= , ( 0,  1,  2,  ,  i N= � ) 

ij ijZ Rλ=  ( , 0,  1,  2,  ,  i j N= � ) 
and  

0
( ) 0( )ij ij F tG G t == ; ,  1,  2i j =  

( ) 0
os s
j j F t =Γ = Γ ; 0

( ) 0
a a

j j F t =Γ = Γ ; 1,  2j =  

Z Rλ=� � ; Y Qλ= ��  

00H I= ; 01
TH L X= ; 02

TH L XC=  
0

11 11
T
a aH G E Eλ= − ; 0

12 12
T
a bH G E Eλ= +  

0
22 22

T
b bH G E Eλ= −  

d dW Sλ= ; d dZ Rλ=  

1 2[ ,  ,  ,  ]s s s s
j j j jNΠ = Π Π Π� ; 0,  1,  2j =  

0 1

1
( )

2
s T

i i iL Y Y −Π = − + ; 0
1 1
s s
i iλΠ = Γ ; 0

2 2
s s

i iλΠ = Γ  

1 2[       ]a a a a
j j j jNΠ = Π Π Π� ; 0,  1,  2j =  

0 1

1
( )

2
a T

i i iL Y Y −Π = −  
0

1 1
a a
i iλΠ = Γ ; 0

2 2
a a

i iλΠ = Γ . 
 
Proof. See the full version of the paper (Han and Yu 
2001). 
 

8. EXAMPLES 
 
To illustrate the effectiveness of the approach, three 
numerical examples are presented.  
 
Example 1. Consider the system 
 

( ) ( ) ( )x t cx t r bx t r− − = − −� �                  (21) 
 

where b and c are scalars, 1c < , 0b > . In Niculescu 

(2001), it was concluded that the system is 
asymptotically stable for  

max

1Niculescu c
r r

b

−
< = .                   (22) 

The exact stability limit was analytically calculated 
as (Niculescu 2001) 

2

max 2

1 1
arctan 1analytical c

r
b c

−= − .         (23) 

Let 0.2c = , 1b = , applying the discretized 
Lyapunov functional approach, the resulting stability 
limits obtained for different N are listed in the 
following table, along with the analytical limit 

max
analyticalr  calculated using (23) and the estimated limit 

max
Niculescur  obtained using (22). 

 

max
analyticalr

 
max
Niculescur

 

1
max
Nr =  2

max
Nr =  3

max
Nr =  

1.3418 0.8 1.3407 1.3417 1.3418 
 
It is clear that the stability limit obtained by the 
discretized Lyapunov functional approach is less 



conservative than the result in Niculescu (2001) and 
it converges to analytical solution as N increases. 
 
Example 2. Consider the nominal delay-differential 
system of neutral type 
 

( ) ( ) ( ) ( )x t Cx t r Ax t Bx t r− − = + −� �        (24) 

where 
2 0

0 0.9
A

−� �= � �−� �
, 1 0

1 1
B

−� �= � �− −� �
 

0
0
c

C
c

� �= � �� �
, 1c < . 

 
The exact stability limit can be analytically 
calculated as follows. 
(i)  For 1c <  and 0c ≠ , 

2

max 2 2

1 0.9
arccos

1
analytical c

r
c

ω
ω ω

� �−= � �
+� �

           (25) 

where  

2 2 4

2 4

1 1.19 1 1.62 0.6561

2( )

c c c

c c
ω − + + − +=

−
. 

(ii)  For 0c = , max 6.17258analyticalr =  
 
Let 0.5c = , the maximum time-delay for stability as 
judged by the criterion in Han (2002) and the 
discretized Lyapunov functional approach, are 
estimated in the following table, along with the 

analytical limit max
analyticalr  calculated using (25). 

 

max
analyticalr  max

Hanr  1
max
Nr =  2

max
Nr =  3

max
Nr =  

4.7388 3.62 4.6850 4.7357 4.7381 
 
It is again to show that the stability limit obtained by 
the discretized Lyapunov functional approach is less 
conservative than the result in Han (2002) and it 
converges to analytical solution as N increases. 
 
We now consider the effect of parameter c on the 
maximum time-delay for stability maxr . The 

following table gives the maxr  by the criteria in Han 

(2002) and this paper for 3N = . It is clear that the 
new criterion here significantly improve the estimate 
of stability limit over the results in Han (2002). 
 

c  0.00 0.10 0.30 
Han (2002) 4.35 4.33 4.10 
This paper 6.17 6.03 5.54 

c  0.50 0.70 0.90 
Han (2002) 3.62 2.73 0.99 
This paper 4.73 3.50 1.57 

 
Example 3. Consider the following uncertain delay-
differential system of neutral type 
 
 

( ) ( ) [ ( )] ( ) [ ( )] ( )x t Cx t r A A t x t B B t x t r− − = + ∆ + + ∆ −� �  
 
where A, B and C are the same as Example 2, and 
∆A t( ) and ( )B t∆  are unknown matrices satisfying 

( )A t α∆ ≤  and ( )B t α∆ ≤ , t∀ . The system above 

is of the form of Eqs. (16) and (18) with L Iα=  and 

a bE E I= = .  
 

For 0.2α = , the maximum value maxr  is listed by the 
criterion in Han (2002) and the discretized Lyapunov 
functional method for 3N =  in the following table 
for various parameter c. As c increases, maxr  
decreases. 

 
c  0.05 0.10 0.15 0.20 

Han (2002) 1.63 1.48 1.33 1.16 
This paper 2.98 2.83 2.66 2.49 

c  0.25 0.30 0.35 0.40 
Han (2002) 0.98 0.79 0.59 0.37 
This paper 2.31 2.12 1.93 1.73 

 

For 0.10c = , the effect of uncertainty bound α  on 
the maximum time-delay for stability maxr  is studied 
by the criteria in Han (2002) and this paper for 

3N = . The following table illustrates the numerical 
results for different α . We can see that maxr  
decreases as α  increases.  

 
α  0.05 0.10 0.15 

Han (2002) 3.61 2.90 2.19 
This paper 4.93 4.05 3.36 

α  0.20 0.25 0.30 
Han (2002) 1.48 0.77 0.03 
This paper 2.83 2.40 2.06 

 
It is clear that the stability limit obtained by the 
discretized Lyapunov functional approach is less 
conservative than the result in Han (2002). 
 

9. CONCLUSION 
 
The stability problem of linear delay-differential 
systems of neutral type has been investigated. The 
discretized Lyapunov functional approach has been 
developed. Stability criteria have been obtained. 
Numberical examples have shown that the results 
derived by these new criteria significantly improve 
the estimate of stability limit over the existing results 
in the literature. 
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