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Abstract: This paper considers the stability problem of linear delay-differential systems
of neutral type. A discretized Lyapunov functiona approach is developed. The resulting
stability criteria are formulated in the form of a linear matrix inequality. For nomina
systems, the analytical results can be approached with fine discretization. For uncertain
systems, the new approach is much less conservative. Numerical examples show
significant improvement over approachesin the literature. Copyright © 2002 IFAC
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1. INTRODUCTION

The problems of stability and stabilization of delay-
differential systems of neutral type have received
considerable attention in the last two decades, see for
example, Byrnes et al. (1984); Spong (1985); Hale
and Lunel (1993); Logemann and Townley (1996).
The practical examples of neutral delay-differential
systems include the distributed networks containing
losdess transmission lines (Brayton, 1966), and
population ecology (Kuang, 1993). Some earlier
results are based on matrix measure and matrix norm
(Hu and Hu, 1996; Park and Won, 1999) or asimple
Lyapunov functional (Slemrod and Infante, 1972).
The resulting criteria are independent of delay.
Although these criteria are easy to use, they are often
overly conservative for practica applications.

Deay-dependent stahility results, which take the
delay into account, are usualy less conservative than
the delay-independent stability ones. A  mode
transformation technique is often used to transform a

pointwise delay system to a distributed delay system,
and delay-dependent stability criteria are obtained,
see for example, Pak and Won (2000), Lieu (2001),
Niculescu (2001), Ni and Han (2001), Han (2001,
2002). The modd transformation may introduce
additional dynamics, i.e. additiona poles that are not
present in the origind system, and one of these
additional poles may cross the imaginary axis before
any of the poles of the original system do asthe delay
increases from zero (Gu and Niculescu 2000;
Kharitonov and Melchor-Aguilar 2000). Moreover,
there are no obvious ways to obtain less conservative
results even if one is willing to commit more
computationa effort to the problem.

For a linear system of retarded type with a constant
time-delay, it has been proven that the existence of a
more general quadratic form Lyapunov-Krasovskii
functional is necessary and sufficient for the stability
of an uncertainty-free time-delay system (Huang
1989). A discretized Lyapunov functional approach
has been proposed to enable one to write the stability



criterion in an LMI form (Gu 1997, 1999a, 1999b,
2001). The criteria have shown significant
improvements over the existing results even under
very coarse discretization. The results in Gu (1999b)
have been extended to the cases where the
uncertainty is norm-bounded (Han and Gu 2001).

In this paper, we develop the discretized Lyapunov
functional approach to study the stability of linear
delay-differential systems of neutral type. Stability
criteria are formulated in the form of linear matrix
inequalities (LMIs). Numerica examples are
presented to illustrate the effectiveness of the
approach.

Notation. For a symmetric matrix W, "W >0"
denotes that W is positive definite matrix. Similarly,
">" "<" and "<" denote positive semi-definiteness,
negative definiteness and negative semi-definiteness.
| denotes an identity matrix of appropriate
dimension.

2. PROBLEM STATEMENT

Consider the linear delay-differentid system of
neutral type

(1) —~Cx(t -1) = AQ)X(t) +BOXE -r) (1)
with initial condition

X(t) =¢(t), Ot r,0] @)
where x(t) OR" isthe state, r >0 is a constant time

delay, ¢(t) is the initid condition, COR™" is a

constant matrix, A(t)OR™" and B(t)OR™" are

uncertain matrices, which are unkown and possibly
time-varying, but are known to be bounded by some
compact set Q , i.e,

(At) B®))mO R™™, foral tO0» ) (3

Define C as the set of continuous R" valued function

on theinterval [-r, O], and let x OC be a segment
of system trajectory defined as

% () =x(t+6), -r<6<0. )

In this paper, we will attempt to formulate some
practically computable criteria for robust stability of
uncertain system described by (1) to (3).

3. PRELIMINARIES
Define the operator
D= ¢0) -C ¢-r) (5)

Choose a Lyapunov-Krasovskii functional V(t,¢) of
aquadratic form

V(it,g): RxC =R
V)=S0 PO+ F [ QT O
+2[0| [0 ¢ @R nanay |de

XS HE O
where
POR™", P=P'
Q:[-r,0] - R™
S:i[-r.0] - R™, §7(§) = S(6)
Ri[-r,0){,0] ~ B™, R(.8) =R €.1)

and Q, Rand S are Lipschitz matrix functions with
pi ecewi se continuous derivatives.

Itiswell known that (Hale and Lunédl 1993)

Theroem 1. The sysem (1)-(3) is asymptotically
stable if the operator D is stable and there exists a
quadratic Lyapunov-Krasovskii functional V of the
form (6) such that for some ¢ >0 (i=1 2), it
satisfies

a9 (DP<V(L, @ @)

and its derivative along the solution of (1) satisfies

V(t.9) < ¢, 4 (0) ¢0) (8)

for any ¢OC , where
. Ad
VA= VER) -

Proof. See the full version of the paper (Han and Yu
2001).

Choose Q, R and Sto be continuous piecewise linear,
ie,
Q (@)=Q0, +ah) =1L-0)Q., +aQ
S(@)=80,, +ah) =1-a)S , +as ©
R(0i, +ah, 6, +nh) =R (a,n)
é{(l_a)R—Lj—l""?Rj +a 7R a0 2
A-MRyja+taR; +(n —a)R_y;.a <

for 0O<sa<1, 0<n<1, where

0 =-r+ih,i=012, ---,N; h=r/N
i.e, N is the number of divisons of the interval
[-r, 0], and histhe length of each division.

4. LYAPUNOV-KRASOV SKII FUNCTIONAL
CONDITION



With the choice of piecewise linear functions,
condition (7) can be written in a linear matrix
inequality.

Proposition 1. For piecewise linear Q, Sand R as
described by (9), there exists a ¢, >0 such that the
Lyapunov-Krasovskii functional satisfies (7) if

§>0 (10)
and
P Q
G %é_'_ﬁ >0 (11)
where
S=diag($ S+ Sy Sv)
Ro R - Ron
f=|Ro Ru v Ru
RNO RNl RNN
Q=(Q, Q, -~ Qu)

Proof. See the full version of the paper (Han and Yu
2001).

5. LYAPUNOV-KRASOVSKII DERIVATIVE
CONDITION

Similar to (7), condition (8) can aso be written in a
linear matrix inequality. We have the following
proposition.

Proposition 2. For piecewise linear Q, Sand R as
described by (9), equation (8) is satisfied for some
C, >0, and arbitrary @UIC if

| Gut)
-G (1)
E(t) = r]S:T r;T

“Gp() Ty ry
G (1) rs rs

%Sd"'Rd o |>0 (12)

rar rar 0 %sd

for all (A(t) B(t))@ ,where

Gy (t) = -PAt) - A" ()P -S, -Qy -Qf

Gy, (1) = PB(t) - AT ()PC -Q{C -Q,

G,,(t) =CTPB(t) +B' (t)PC -C'Q, -Q;C +S,
S =diag(Sy; Sz - Sw)

S =2(8 -5.)
Rit Riz - R
R, = R:ng Rd22 R:i:ZN
]stl Rz - Raw
Rii :F(RJ “Ryja)i =42 -, N
=5 ri, il =42

15 =2 A 0Q +Q) +1(Q ~Q.)
_%(RTN +RT—1,N); i=142,---,N
r5 =3B 0Q +Q) - C"(Q Q)

+%(RT,0+RT-1,0) ©i=12---,N

r?:[r?l r?z r?N]; =12
1 1
rs =§AT MG -Q) +§(RTN _RT—LN)

ra =%BT HQ -Q-) ‘%(RT,o +RL,).
i=12,---,N

Proof. See the full version of the paper (Han and Yu
2001).

6. STABILITY CRITERION

Now we consider the stability of the operator D.
According to Definition 3.1. in Chapter 9 in Hale and
Lune (1993), D is stable if the considered
difference system Dg=¢g0)-C¢g-r) =0 is
asymptoticaly stable. A sufficient condition is that
there exigsamatrix K >0 such that

C'KC-K <0 (13)

From the above discussion, we now state and
establish the following theorem.

Theroem 2. The sysem (1)-(3) is asymptotically
gtable if there exist real matrices P=P" >0, Q,
§,(=0%2 - N), R (,i=0,12 -, N)
and K >0 suchthat §, >0, (11), (13) and (12) for
al (At) B(t))Q aresatisfied.

Proof. See the full version of the paper (Han and Yu
2001).

When C =0, system (1) becomes the following
system of retarded type

X(t) = A(t)x(t) + B(t)x(t —r) (14)
(12) reduces to
[t R bl G A
—GEHET()  GET(t) r r3
1
s rf  ps+R 0 |70
ra’ rar 0 %sd

(15)
which is (46) in Gu (2001), where

G (t) = -PAt) —A" ()P -S —Q -QX
G (t) = PB(t) -Q,



G0 =%.

From Theorem 2, the following corollary is easily
obtained.

Coroallary 1 (Gu 2001). System (14) (2) and (3) is
asymptotically stable there exist real matrices
P=P'>0,Q, S, (i=0,1,2 -, N) and R,
(i,j=0,1 2, ---, N) such that (11) and (15) for all
(At) B(t))@ for all are satisfied.

Proof. See the full version of the paper (Han and Yu
2001).

7. STABILITY OF SYSTEMS WITH NORM
BOUNDED UNCERTAINTY

For polytopic uncertainty, it is clearly sufficient that
(12) only needs to be satisfied at all the vertices. Now
we consider the norm bounded uncertainty described
by
Alt) = A+ DA(L), B(t) = B+AB(t) (16)
where
[AA(t) AB(1)] = LF()[E, E] (17)
where F(t)ORPY is an unknown real and possibly

time-varying matrix with Lebesgue measurable
elements satisfying

T (F(1) <1 (18)

and L, E, and E;, are known rea constant matrices

which characterize how the uncertainty enters the
nominal matrices A and B.

Now we can gate and establish the following result.

Theroem 3. The system described by (1) and (2),
with uncertainty by (16) to (18) is asymptotically
stableif there exist real nxn matrices X = X" >0,
Y VV|:VViT (i=0,1 2, -+, N), Zij:Z;
(i,j=0,14 2, -~-, N), K>0 and a scalar A>0
such that W, >0, (13) and the following LMIs are
satisfied

X Y
- . ~|>0 19
v Yz (19)

h

Hoo -Hp He e Mo
-Hgy Hu -Hp n: ng
Hp -HL, H n; ns
S I
Mg Ny n; FWd+Zd 0

na' na ng 0 %Wd

where

X=AP,Y,=AQ,W=15,(i=0,1 2 -, N)

ZIJ :ARJ (|,J :0, 1, 2, ttty N)

and

? =Gy ()] ryos 11 =1 2
r“—r5|( A A s
Z=JR; Y=)Q
Hp=1; Hy=L"X; Hy,=L"XC

11:/](311 EaTEai H12:/]G&+E;Eb
H22 :Ang _Eb E,
W, =AS,;; Z4 =1R,

N =[5, N5, -, N1 j=0,1 2

NG = -ELT(Yi +Y4); Mg = Ay N5 =Arge
ne=[Ms Nf, - Nl1; j=012
g =100

Ma=Are; ng =Ary.

Proof. See the full version of the paper (Han and Yu
2001).

8. EXAMPLES

To illugtrate the effectiveness of the approach, three
numerical examples are presented.

Example 1. Consider the system
X(t) —cx(t —r) = —bx(t -r) (21)

whereb and c are scalars, |c| <1, b>0. In Niculescu

(2001), it was concluded that the system is
asymptotically stable for
r< rnl:l;;ulacu :1_b|C| . (22)

The exact stability limit was analytically calculated
as (Niculescu 2001)

analytical _
max -

2
iarctan iz—l. (23)
c

Lete c¢=02, b=1, applying the discretized
Lyapunov functional approach, the resulting stability
limits obtained for different N are listed in the
following table, aong with the analytical limit

ranavical calculated using (23) and the estimated limit
r Nicvlesst - ohtained using (22).

max

pandyical | pNeuessl | N=1 [N=2 [N=3
1.3418 0.8 1.3407 | 1.3417 | 1.3418

It is clear that the stability limit obtained by the
discretized Lyapunov functional approach is less



conservative than the result in Niculescu (2001) and
it convergesto analytical solution as N increases.

Example 2. Consider the nominal delay-differential
system of neutral type

(1) —Cx(t-1) = AX() +Bx(t -1)  (24)

S AT
c=[§ o le<t.

The exact doability limit can be analytically
calculated as follows.

(i) For|c/<landc#0,

: 1 cw’ -0.9
rayicd — = arecos| ———— 25
max p £1+ o j (25)

where

where

- 2(c? -c*)

(ii) For c=0, r2Mia g 17253

max

J—1+1.19c2 +1/1-1.62¢? +0.6561c

Let ¢ =0.5, the maximum time-delay for stability as
judged by the criterion in Han (2002) and the
discretized Lyapunov functional approach, are
estimated in the following table, along with the

anaytical limit r2@%@ cqculated using (25).

max

K(t) —Cx(t —1) =[ A+ DAD)]X(t) +[B +BO)]x(t ~r)

where A, B and C are the same as Example 2, and
AA(t) and AB(t) are unknown matrices satisfying
[AA(t)| <@ and |AB(t)| < a, Ot. The system above
is of the form of Egs. (16) and (18) with L =al and
E,=E, =I.

For a =0.2, themaximum value r,,, islisted by the

criterion in Han (2002) and the discretized Lyapunov
functional method for N =3 in the following table

for various parameter c. As C increases, r
decreases.

max

C 0.05 0.10 | 015 | 0.20
Han (2002) 1.63 148 | 133 | 116
This paper 2.98 283 | 266 | 249
C 0.25 030 | 0.35 | 0.40
Han (2002) 0.98 0.79 | 059 | 0.37
This paper 231 212 | 193 | 1.73

For ¢=0.10, the effect of uncertainty bound a on
the maximum time-delay for stability r,.,, is studied

by the criteria in Han (2002) and this paper for
N = 3. The following table illustrates the numerical

results for different a. We can see that r
decreases as a increases.

max

analytical Han N=1 N=2 N=3
Mmax Fmex Fmex Mmax Mmax
4.7388 362 | 46850 | 47357 | 47381

It is again to show that the stability limit obtained by
the discretized Lyapunov functional approach is less
conservative than the result in Han (2002) and it
convergesto analytical solution as N increases.

We now consider the effect of parameter ¢ on the
maximum time-delay for stability r The

max *
following table gives the 1, by the criteriain Han
(2002) and this paper for N =3. It is clear that the

new criterion here significantly improve the estimate
of stability limit over the resultsin Han (2002).

a 0.05 0.10 0.15
Han (2002) 3.61 2.90 2.19
This paper 4.93 4.05 3.36
a 0.20 0.25 0.30
Han (2002) 1.48 0.77 0.03
This paper 2.83 2.40 2.06

C 0.00 0.10 0.30
Han (2002) 4.35 4.33 4.10
This paper 6.17 6.03 5.54
C 0.50 0.70 0.90
Han (2002) 3.62 2.73 0.99
This paper 4.73 3.50 1.57

Example 3. Consider the following uncertain delay-
differential system of neutra type

It is clear that the stability limit obtained by the
discretized Lyapunov functional approach is less
conservative than the result in Han (2002).

9. CONCLUSION

The stability problem of linear delay-differentia
systems of neutral type has been investigated. The
discretized Lyapunov functiona approach has been
developed. Stability criteria have been obtained.
Numberical examples have shown that the results
derived by these new criteria significantly improve
the estimate of stability limit over the existing results
in the literature.
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