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Abstract: Some measured data matrices in projects are subjected to (not necessarily small)
deterministic perturbations. Different from former Robust Fuzzy Tree model (RFT)
which studies structured uncertainties, we propose another RFT to deal with unstructured
uncertainties. This RFT uses fuzzy tree model (FT) and unstructured robust least squares
(RLS) solution to work on the nonlinear modeling problem with unstructured bounded
data uncertainties. The RFT not only keeps the features that FT can deal with high
dimensional problem, has less computation load and has high precise, but also decreases
drastically the sensitivity of FT to bounded uncertainties. Copyright © 2002 IFAC
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1. INTRODUCTIONIII

Some perturbations (not necessarily small) have
effect on measured data in projects. The given
input-output data is not a single pair (4,4), but a
family of matrices (4+Ad4,b+Ab) , where
A=[AA4, Ab] is an unknown-but-bounded matrix.
Linear modeling problem is to find a solution x to
an overdetermined set of equations Ax=b. Least
squares solution (LS) minimizes the residual |Ap|

while total least squares solution (TLS) is to find the
smallest error || [AA4 Ab]” - - They both do not

consider the bounded data uncertainties problem that
is studied in robust least squares solution (RLS).
Ghaoui and Lebret discussed structured robust least
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squares solution (SRLS) which minimizes a
residual error

#(A,b, p,x)= WXH(AO +.8,4)x—(by + 2. 8,b,)|
<p

(L Ghaoui and H Lebret, 1997). Independently, S.
G.H.Golub
unstructured RLS that minimizes another error

r(4,b,n,m,) = |4+ Ad)x — (b + Ab)|

worst-case

Chandrasekaran  and formulated

max
[ad]<n.Jabl<n,
(S. Chandrasekaran, G.H.Golub, et.al.1998). In this
paper we work on a nonlinear modeling problem
with unstructured bounded data uncertainties, so only
the latter RLS solution is used, which can guarantee
that the effect of uncertainties will never be

over-estimated and that the computation has less
load.

Now, consider the nonlinear modeling problem with

data uncertainties whose input data vector and output



value are denoted, respectively, as x and y, with
perturbations  denoted as Ax and Ay
correspondingly. Within the scope of our knowledge,
no result has been shown on this problem. Thanks to
the fact that the consequent parts of a Takagi-Sugeno
fuzzy logic model (TS) (T. Takagi, M. Sugeno, 1985)
describe linear relations between input vector and
output value, we can employ RLS solution on these
parts to form a nonlinear robust TS model. Fuzzy
tree model (FT) (Zhang J, Mao J, 1999) is one of TS
models, which uses a growing binary tree to divide
sample data space. Compared with some other TS
fuzzy logic models, such as ANFIS (J.Shing, R Jang,
1993), fuzzy subtractive clustering model (S. Chiu,
1994), FT model is of less computation, higher
accuracy, and insensitivity to the dimension of the
Zhang (Zhang J, 1999) in his
dissertation proposed a nonlinear robust fuzzy tree
model (RFT) to deal with structured bounded data

input space.

uncertainties problem with Ax =rk, |7/| <p and k

being a constant vector. Different from the former,
this paper proposes another RFT model to work on

unstructured bounded data uncertainties problem

with 4| <¢,|a<C, .

2. RFT MODEL WITH UNSTRUCTURED
BOUNDED DATA UNCERTAINTIES

2.1 Fuzzy tree model (FT)

Figure 1. Structure sketch of a FT model

A FT model uses leaf nodes of a growing binary tree
to divide sample data space. For every leaf node in a
leaf nodes set , a fuzzy rule is defined by,

LW :if x belongs y,(te T) ,then

2.

where T denotes the leaf nodes set of a binary tree,

At it t t
y —CO +C1)C1 +~--+cnxn

X denotes the fuzzy set for the leaf node f. If the
membership function on the leaf node ¢ is denoted

by p,(x) and the input vector is denoted by

x=[1 x x, x,]", then the output of the

fuzzy tree model is constructed as,

OEDWACHE /Z H, (x)

teT teT

(2.2)

Every node te€T7T presents a linear relation

P =(c) x with ¢, =[c)cl---c.]" . The P’
in (2.2) is constructed by $' =(c,)" x ofall leaf
nodes. Thus J andall c,(t€ T ) construct a linear
(2.1) and

K sampling data are given, all c,(te T") can be

relation. Hence, if other parameters in

estimated by solving a least squares solution (LS)
and the following error arrives minimum,

K

Lo i

E=Y —(y' =3 (2.3
; SO =30

The membership function of root node is defined by

M,ry(x)=1and the membership function of any
(2.6) , where the

corresponding auxiliary membership function is
defined by (2.5) , p(-) denotes parent node. «,

other node is defined by

is positive for every left child node and is negative
for every right child node.

K K
0, =) 1, (x)epnx) [ D 1 (x) (2.4
i=1 i=1

1
1+ exp[-0t, (¢ )X = 6,)]
M, (x) = Hopy (x)ﬂ, (x)
Define node (ze T ) error by e, and divided node

(2.5

f,(x)=

(2.6)

error by e, . If e, >e; holds, then the node ¢

shall be divided.
K

e = Y [, (x =/ xD)

i=1

K
e = [, ()0
i=1

2.7

B Hooy (X )eyn X + oy (X)X
/j[([) ('xl ) + :ar(t) (xl )

(2.3)
FT model is not only insensitivity to the dimension of
the input space, but also can make a compromise
between the amount of model fuzzy rules and the
accuracy of model parameters.

2.2 RFT model with unstructured bounded data
uncertainties

Given{(xi,yi)|xie Rn+1’yie R,i=1,2,"'K}



and perturbations Ax’ =[0 Ax| Ax}) --- AXL]T,
. The RFT

model with unstructured bounded data uncertainties

Ay’ where x' =[1, x{,, x,1"

is to work with the bounded data uncertainties of
“Ax’“ <, ‘Ayi ‘ < Cb . A key point is to identify all
the linear coefficients v, (€ T ) of the robust linear
relations Y, = vtT (x+Ax) on all leaf nodes,

it t tqT
where v, =[v, v, -+ v,

Given {tiefh’:l,---,p}
“Axi“w SC,‘Ayi‘SCb, the worst-case error of a

Definition1:

RFT model
uncertainties is defined by

with unstructured bounded data

Py i=12 K g va )= max |V, ¥
({( y)l }C T) HAstg,\Ay\scb‘ ¢ “
where
v =[Vz1T szT ”vtpT]T’ Y, Z[J;é “'ﬁf]T
Xz[il---yK]Ty AX:[A)}LI'“AXVK]T (2.9)
Y:D}l yK]T,Ayz[Ayl AyK]T (210)
(Y +AY) =Y, =vE(X + AX)
qT

- ,u,(x'*'Ax)() /Jt(X+Ax)(,~)T

>, +Ax') L'+ 4

- T -

T

| meany B A
AXIZM(M)T e )

S, + ) S, (x4 + Ax)

el €T -

XLk, A3
Al el
yg =+ i /
D H (" + A

teT

Definition2: The robust least squares problem of a
RFT model
uncertainties  is

with unstructured bounded data
defined by (2.11), and the
correspondingly robust least squares solution
Vv, , L€ f} is denoted by (2.12). There, “arg” is

used to get the corresponding variable value when
the function reaches minimum.

q)({xi, yOYli=1,2-- K}C,vf)
= {minf}r<{(xi, y[)|i= 1,2 K}C,vf)

v, ,te

V7 =arggb({(xi,yi)|i=l,2---K}C,vf) (2.12)
The key problem is to get v,

(Y + AY) =vL (X + AY)

@2.11)

from
Theorem 1 gives a

transformation relation from the known bounded data

uncertainties

Jax'].. <

¢ p  into
||AX ||2 <n, ||AY||2 <n, - Then the approach to get the
vs by using ||AX||2 <n, ||AY||2 <7n, is given in

theorem 2 and two supplements.

, p} and a
input-output data set
i, y)Ix e R™, i e Ri=12,-K}  with
bounded data uncertainties HAx’“m <g ,‘Ayi ‘ 4 b

Theorem 1: Given {tief|i=1,---

known

the solution vz of the robust least squares problem

of a RFT model can be transformed into solving the
following minimization problem,

min max {[(X +AX)E - (¥ +AY))|

Jax], < LS,

where 1 and 1, are selected as n=C,/(n+1)p
and 1, =, VK respectively.

2 (2.13)

Proof: Denote a (n+1)p row vector by =z .

According to definitions and properties of the
2-induced norm and the «o-induced norm of AX , the
following deduction holds.
Jax], = so Jarz], < s Jear:].
2 2
< Jax| (o Jo.)
2

According to definitions of the co-induced norm of
AX and Ax' and “Ax’“ <¢ , the following

(2.14)

deduction holds.

1, () + Ax)
AX|| = — " |Ax
. maxgg 2u<xf+Axf>‘ d

el

< max”ijH <
j oo

(2.15)

For every (n+1)p row vector z , there is the

following inequation.

|2l < e+ D,

Introduce the above two inequations into (2.14),

(2.16)

hence we get the following expression.

”AX”z <Cy(n+1p sup "2”2 E(n+Dp

I=l,=1
Similarly, according to the definition of the 2 norm
of AY and the

‘Ayi‘ <g  » there is the following expression.

Jar, <VK|a|=¢, VK

known bounded uncertainties



Hence, the above two expressions give us a

transformation relation from HAx’ ”w < ,‘Ayi ‘ < b

into ||AX||2 <n,

AY”2 <7, . That means we can
form the RFT model by solving the RLS problem of

2.13) with n=¢(J(n+Dp, 1, =, VK . Proof

ends.

Theorem 2 (S. Chandrasekaran, G.H.Golub,
et.al.1998): Given Ae R™" ,with m>n and A4

full rank, b€ R™, and nonnegative real numbers
(71 B ) The following optimization problem

minmax(4 + A4)% - (b + 4b)] :|ad], <n. |4, <n,}

always has a solution X. The solution(s) can be

constructed as following.

)
® Introduce the SVD of A4, 4 =U|:0:|VT,

where Ue R™"and V e R™" are orthogonal, and
X =diag(0,,--+,0,) is diagonal, with

0,20, 2:--20, >0 being the singular values of 4.

. T, by | 1
® Partition the vector U' b into b =U"b
2
where b € R", b,e R™™

® Introduce the secular function

2
Q@) =b (Z> —*D(E +ad) b — b, .
o
-1
el e
©fel,
First case: b does not belong to the column span of
A.1f n=1,, then the unique solution is x=0. If

® Define 7, =7——— a
|75,

n<t, , then the wunique solution is

A ~r YL A . .
xX= (ATA + Od) A"b , where @ is the unique
positive root of the secular equation () =0.

Second case: b belongs to the column span of 4.
If n27,, then the unique solution is x=0. If

T, <N<7T, , then the wunique solution is

A ~r YL A . .

xz(ATA+OcI) A"h , where @& is the unique
positive root of the secular equation Q2()=0. If
n<t, , then the

unique  solution  is

$=VX'"by=A4"b. If n=1,=1,, then there are
infinitely many solutions that are

X=BVE'b,=BAh,for 0<B<I.

given by

Supplements:  Theorem 2 gives us a general

method to get the RLS solution. In order to apply it

in RFT model, two supplements should be analyzed.

First, although "Ab” , <17, is a given condition, 1),
doesn’t really affect the value of a RLS solution X.

Correspondingly the condition of |Ay" | <¢, inthe

RFT model
uncertainties can be deduced not to affect the value
of the robust least squares solution vz .

with unstructured bounded data

Secondly, according to the definitions of X, AX,
x' and Axi, we find that some columns of X
which correspond to the constant term of x' are
unrelated to input and thus do never smeared by
perturbations. We can arrange these precise columns
as frontal part and other smeared columns as later
part. This new constructed matrix becomes the

matrix in a restricted perturbation problem (S.

Chandrasekaran, G.H.Golub, et.al.1998). Given
A=[4, 4] , AeR™" with |Ady], <n, ,
||Ab||2 <1, and

R, Ry é_lA

=R = | 0 Ry ) "b=|b,,

0 0 b,

with R, € R""™ ") " R, eR™ , b,eR"",
by, € R",b, e R™™", the solution of the restricted
perturbation problem is constructed as X =[x, X,],
with %, =R;'[b,, — R,%,] and %, being the

solution of

[ o ) )05 )
Wl nbfi ] =

Hence, based on this method, we can get the robust
least squares

2

=n,

2

solution v, from the restricted

7
perturbation matrix X .

2.3 Implementation of the RFT with unstructured
data uncertainties

',y Ix e R™ yi e Ri=12,-K}
and unstructured bounded data
“Axi”m SC,‘Ayi‘Sgb , a RFT model with data

Given

uncertainties



uncertainties can be implemented as following.
Firstly, form a FT model according to algorithm 1.
Secondly, find the robust linear coefficients v and

form the RFT model according to algorithm 2.

Algorithm 1:
(1) Initialize parameters of the root node—Ilet

H.ry(x)=1 and estimate c,y . Initialize

o, (te YN") and a error bound ER;
(2) Calculate e, and e, of each leaf node by using

(2.7—2.8) . Use the condition of e, >e,; to
find out all divisional leaf nodes. If they/it exist(s),
then continue, else end algorithml and go to
algorithm 2;

(3) Divide
{9 eT } and U,(x) of the new leaf nodes
by using (2.4—2.6)

¢ (te TN") from (2.3);

(4)Train all o, (t€T) and ¢, (teT ). Calculate
(2.3). If E declines and does not achieve ER,
then go to (2), else go to algorithm 2.

every divisional node. Calculate

t

. Finally estimate all

Algorithm 2:
(1) Initialize n=¢{/(n+1Dp and 0, = Cb\/E 5

(2) Arrange all columns of X to become matrix

A with the frontal p precise columns
(suppose there are p leaf nodes);
h=1,2,---p
Ai,h :Xi,[(n+l)(h—l)+l] =12, K
Ai,[p+11(11—1)+q] = Xi,[(n+1)(h—l)+l+q] g=1,2,-n

(3) Put the output vector Y as b into supplements
and theorem 2 to get the solution x;
(4) Inversely arrange the columns of x to get V.

VF ety -ty — Xk h=1,2,---p

VE (nel)(h-1y+14q X p+n(h=lytg q=1,2,-n

In summary, RFT model with unstructured data
uncertainties not only possesses features of FT model,
but also works on unstructured data uncertainties.
Thus RFT model can be viewed as a robust version
of FT model. Moreover, this model gives us a new
idea to obtain the corresponding robust versions of
other TS fuzzy logic models to work with

unstructured uncertainties HAx’ ”m <{, | ‘ < b

3. SIMULATION RESULTS

Consider a nonlinear function

xe[0,2zr) . Data set is

Example 1I:
y=x+sin(x) ,

{(xi,yi)|xi =%(i—l)e R,yi =y +sin()ci),i=1,2,-~-N}

with N =126. Form a RFT model and a FT model
with 8 fuzzy rules. Compare the root mean squared
errors (RMSE) for perturbed input of the two models
in table 1.

- - Fuzzy Tree model
—— o u Fuzzy Tree model

8 - - - 8
A

Figure 2. RMSE with { =8.0, Axe[-8, §]

- - Fuzzy Tree model
— o u Fuzzy Tree model

=)

RMSE

80 -0 -0 -0 0 0 0 0 80

A
Figure 3. RMSE with { =8.0, Axe [-80, 80]

Figure 2 plots error functions of the two models. In
the range of "Ax”oc <{ the error of the FT model is

less than the error of the RFT model in a little range
of ||Ax||m — 0, but out of which the RFT model has

less error. When ||Ax||w increases from 0, the error of

the FT model increases quickly while the error of the
RFT model increases slowly. Furthermore, figure 3
indicates clearly that even when ||Ax||w increases
much larger than §, the error of the RFT model

does not increase while the error of the FT model
increases largely.

Other RFT models considering different ||Ax||w <g

are given in table 1. Data result that all these RFT
models decreases drastically the sensitivity of the FT

models to bounded uncertainties.



Table 1 Comparison of two models

¢ : a;‘); . FT(RMSE) RFT (RMSE)
Max Min Max Min
1.0 [-1,1] 1.207 0.0055 0.981 0.159
4.0 [44] 12.66 0.0055 2.883 0.159
80 [-88] 27.89 0.0055 2.883 0.159
Example 2: Consider a nonlinear function

.f(uﬂyyz) =(1 +u0'5 —|—y_1 +Z—1.5) )
vector by

Denote input
x=[1u y z] Data set is
{(l, Y i:6l’ i:6i, i:6i’ =1,2,---N}
N N N
with N=6 Bounded
||Ax||w <{ =3.0. Form a robust tree model and a FT

uncertainty  is

model with 16 fuzzy rules.

Table 2 Comparison of two models

Ax FT (RMSE) RFT (RMSE)

Max Min Max Min

[0.820.820.34] 26.76 1.345 3.240 1.561
[0.31 0.57-0.70] 9.061 1.345 3.278 1.563
[0.800.520.17] 26.56 1.345 3.489 1.567
[0.74 -0.01 0.20] 25.03 1.345 4.240 1.567

Random 3-dimensional perturbations in ||Ax||w <g

with uniform distribution are used to check the
robustness of the RFT model and the FT model in
table 2. Results show that the RFT model keeps
smaller errors for different positions and amplitudes
of perturbations.

Numerical simulation results show that RFT model is
more robust for different positions and amplitudes of
perturbations than FT model. In addition, these
numerical experiments are obtained in less than one
minute and thus show that the RFT model really
reduces computational burden drastically than the
former RFT model (Zhang J, 1999).

4. CONCLUSION

Based on RLS proposed by S. Chandrasekaran,
G.H.Golub and FT model, this paper proposed RFT
model with unstructured bounded data uncertainties.
The RFT not only keeps the features that FT model

can deal with high dimensional problem, has less
computation load and has high precise, but also
decreases drastically the sensitivity of FT model to
uncertainties and thus possesses good robustness.
Moreover, the procedure gives us a new idea to
obtain corresponding robust versions of other TS

fuzzy logic models.
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