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Abstract: In this paper we continue the work in Malabre and Velasquez (1994) and
Bonilla Estrada and Malabre (2000) and study the row-by-row decoupling problem
of linear time-invariant systems by proportional and derivative state feedback. Our
contribution, with respect to previous results, is that we develop a numerical method
to compute the desired feedback matrices. Our method is only based on orthogonal
transformations and hence is numerically reliable. A numerical example is giv ento
illustrate the proposed method. Copyright@2002 IFA C
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B € R™™ and C € RP*". Without loss of
generality, we always assume that

rank(B) = m, rank(C) = p. (2)
1. INTRODUCTION
Forsystem (1), Tan and V andewlle (1987) pro-
Consider the linear time-invarian tsystem of the posed in a proportional and derivativ e (PD) state
form feedback

#(t) = Az(t) + Bu(t), y(t) = Cz(t), (1) u(t) = Gi(t) + Fa(t) + r(t) (3)

where 2(t) € R",u(t) € R™ and y(t) € R? are such that the output of the closed-loop system
state, input and output, respectively, A € R"*", exactly maches its reference, namely, y(t) = r(t).



As Malabre and Velasquez (1994) pointed out,
this PD feedback was found assuming, first, that
system (1) is controllable and square invertible,
carrying, next, the system into its m-block di-
agonal Brunovsky canonical form in Brunovsky
(1970), and proposing, finally, the PD state feed-
back u;(t) = #;(t) + cjz;(t) (where the ¢; are
the rows of C). Following the same procedure
of Tan and Vandewalle (1987), Malabre and Ve-
lasquez (1994) studied more general proportional
and derivative state-feedback row by row decou-
pling problem as follows:

Problem 1: Find feedback (if possible)

u(t) = Gi(t) + Fz(t) + Mr(t) (4)
such that the closed-loop system

(I - BG)i(t) = (A+ BF)a(t) + BMr(t),
y(t) = Cz(t) (5)

satisfies that
y(t) =r(t). (6)

Hence, in Malabre and Velasquez (1994) the con-
trollability assumption was relaxed and the square
invertibility was replaced by a right-invertibility
assumption. More recently, in Bonilla Estrada and
Malabre (2000), a matrix-based procedure was
proposed for designing a solution without requir-
ing the use of canonical forms.

In this paper, we continue the work in Malabre
and Velasquez (1994) and Bonilla Estrada and
Malabre (2000). We will consider the following
two aspects of Problem 1. Question 1 was partly
studied in Bonilla Estrada and Malabre (2000),
while question 2 has not been studied yet.

(1) In Tan and Vandewalle (1987) and Malabre
and Velasquez (1994), a fundamental ques-
tion arising when dealing with nonproper
control laws was not considered, namely, the
existence and uniqueness of state solutions
for the closed-loop system (5). Since a PD
control law of the form (4) is a nonproper
transformation, we have to verify that the
state solution of closed-loop system (5) exists
and is unique, it is well known that this is
equivalent to the regularity of the pencil (I —
BG,A+ BF), i.e.,

rank,(s(I — BG) — (A+ BF)) =n,

where and in the following, rank,(D(s)) de-
notes the generic rank of function D(s). This
question was solved in Bonilla Estrada and
Malabre (2000) but only for the particular
solutions proposed there.

(2) We need to develop a numerically reliable
design method for the construction of the
desired feedback (4).

Our method given in this paper is only based on
orthogonal transformations and hence is numeri-
cally stable and reliable. Furthermore, our method
can be implemented using existing tools such as
Matlab and LAPACK.

2. MAIN RESULT

It is well-known that any matrix @ € R™*™ can
be factorized as

vo =[] n, @

where U and II are orthogonal matrix and permu-
tation matrix, respectively, R; is nonsingular and
upper triangular. The factorization (7) is called
the QR factorization of ® with column pivoting.
In (7), let

R:[R1 R2]H, (8)
then R is of full row rank and

ve =], ©)

It is also well-known that any matrix pencil can
be transformed into the so-called generalized up-
per triangular form under orthogonal transforma-
tions. This generalized upper triangular form is
well analyzed in Van Dooren (1981).

Lemma 1. (Van Dooren (1981)) Given a matrix
pencil (£, A4), £,4 € R™! there exist orthog-
onal matrices P € R, Q € R'*! such that
(PEQ,PAQ) are in the following generalized up-
per triangular form:

L ls

s&12 — Ar2
5822 — Aso

ni s&i1 — A
no 0

P(s€ — A)Q =

where
rank(fn) =N,
rank(sgm — A22) = 12, Vs € C.

As a direct consequence of the QR factorization
and Lemma 1, we have the following theorem.

Theorem 2. Given system (1). There exist orthog-
onal matrices U,V € R™*"™ and W € R"™*" such
that



ni T2 D rank(Eg)) =1y,
ny [sI— App —Ar2 —Ais rank(sEyy — Azs) =12, Vs € C.
U(sI-A)V = ny 0 sEyy — Az sEz — Aog |,
ng —Az1 sEsy— A3y sEzz3 — Asg Set
ng m—ns n1 Ny

ni | Bu Bis

(B — AR sBR) - Al ],

UBW = n» 0 0 , (11)
ns B31 0
- - (2) (2)
ni nz p UQ(SES) _ Ag)) _.m sEyy — Ay 7
CV=p [0 0 C], ny | sEzz — A3

where

rank(Bs1) = ng, rank(Cs) = p, (12)
I'a.nk(SE22 — Azz) = ﬁz, Vs € C/'7 . (13)

Proof. We prove Theorem 2 constructively via the
following algorithm.
Algorithm 1

Input: Matrices A € R"*" B € R (C €
RP*" with rank(B) = m and rank(C) = p.

Output: Orthogonal matrices U,V € R™*" W €
R™*™ and the condensed form (11).

Y — AL = o2 — AR

Step 3. Since

| oo -

which is orthogonal, we can compute an orthogo-
nal matrix Us of the form

2) (2 2
BY B BY
Eyy Eog

2) (2 2
B ES) BY

(ESHT (BS)T

Us = 3 3
vy Uf)

Then we have

. . . T -
Step 1..Perf0rm QR factorizations .Of B and C*, SES) _ Aﬁ) SES) _ Ag) sEg) _ Aﬁ?
respectively, to get orthogonal matrices U; and V; 3 ) 2) ) 2) ) )
such that sEg — A3y sEsy — Az sEgy — Agy i
ny %) p
n—m 0 ni SI — A11 —A12 _A13
U B = 1 , = R
! m [Bg )] n3 [ —Az1 sE3x — Azy sHzz — Asg |
n—p b and
CV1 =. [ 0 Cg],
0 ny B1 |
- i) 2
rank(Bé )) =m, rank(Cs)=p. |
It is easy to see that
Set -
GBI [ B0 | _
Ui(sI — AV, =: rank | Bs| = ran Eg) Bél) | =ny+m=n; +ns,
n—p p ) )
n—m SES) _ Agll) SES) _ Ag) which gives that
mo [sEy - Ay sEp) - Ay rank(B;) = ;.

Step 2: Compute the generalized upper triangular

form of sEﬁ) —A§11> to get orthogonal matrices Us

and V5 such that
Us(sByy — AV =:
ny n2
iy [sEY — AR sBR) - A7)
N9 0

where

Step 4. Compute the QR factorization of BI to
get orthogonal matrix W such that

ns m — nsg

B3W =:ns [B31 0 ]

Because Bs is of full row rank, thus,

rank(Bs;) = ns.

Step 5. Set



ns m —ns

B W =: [331 Bss ],
&N Ew
U:: In2 [ 2 Ij| U1,
usy sy
—v | V2
e[|

Then, U(sI — A)V, UBW and CV are in the
condensed form (11). O

Since the generalized upper triangular form (10)
and consequently the condensed form (11) are
obtained by only several QR factorizations, hence,
the flops required in Algorithm 1 is O(n?).

= rank 0

=n+p,
which yields that
s(I - BG) - (A+ BF) B

= rank [S[ — A+ B11B3_11A31 B12] + ny +n3 + p, Vs € C/'7

Furthermore, Algorithm 1 is implemented by only
orthogonal transformations, so, it is numerically
stable.

The solvability condition for Problem 1 can be
read immediately from the condensed form (11).

Theorem 3. Given system (1) with rank(B) = m
and rank(C) = p. There exists a state feedback of
the form (4) such that the pencil (I—BG, A+ BF)
is regular and (6) holds if and only if

T~L2 = nN2. (14)

Furthermore, if system (1) is a minimum phase
system, then F' can be chosen such that the closed-
loop system (5) is stable, i.e., the pencil (I —
BG, A + BF) is stable.

Proof. Necessity: Since the pencil (I—-BG, A+BF)
is regular and (6) holds, so,

C(s(I - BG) — (A+ BF)) 'BM = I,.

Consequently, we have

c 0

s(I — BG) — (A + BF) BM}
C 0

=n + rank, (C(s(I — BG) — (A+ BF)) 'BM)

ntp rank, [S(I—BG) — (A + BF) B}

> rank, [

thus, we have

mﬁgsU—BGkﬂA+Bﬁﬁﬂ

rank, c g | =ntr (15)
Note that
n=ni+ns+n3=ny+ns +Dp, (16)
B3, is nonsingular, C5 is of full column rank, the
property (13) holds true, and furthermore
rank s(I-BG)-(A+BF) B
| C 0
— rank [U(sI — A)V UBW
- | cv 0
[sI —A;n —Ais —Ais Bii Bi
0 SE22 - A22 SE23 - A23 0 0
=rank
—Asz1 sEsy — A3y sE33 — Azz B3y 0
0 0 C; 0 0
sl — Ay + BuB;llAm —App — BllBil(SEm — Asz) Bi2 +ns+p,
SE22 — A22 0

=ny + 0z +nz +p=(n1 +n3)+ (2 +p).(17)

Hence, the condition (14) follows directly from
(15), (16) and (17).

Sufficiency: Because the condition (14) holds, we
have

ny =Nz, p=N3.
Since Bs; is nonsingular, so, there exist G2 €

Rns)(’nz, G13 I Rns)(’ng, Fll I Rns)(’nd, F12 c

R™*"2 and F;3 € R™*" guch that
B3y [Gr2 Gis] = [ Esy Ess |, (18)

By [ i1 Fiz Fis |

Let

. 0 Gi2 Gis | ¢ 7
G_W[O 12 G ]v ,

_ Fi Fiy Fiz | 1 _ I,
F—WI&OO]V,M—W[O,W)

where Fb1, Fio, F13 are arbitrary. Then we have

U(s(I — BG) — (A+ BF)V =

= —[As1 A3y Azz + B31Cs . (19)



sl — Ay + BuBg_llA:n — B2 Fy —831133_11E32 — A+ Bnt_llAa‘z —831133_11E33 — Az + BIIB?,_11A33
0 sEay — Ay

0

Note that the property (13) holds and Bs;Cs is
nonsingular, we know that the pencil (I —BG, A+
BF) is regular. Moreover, C(s(I — BG) — (A +
BF))™'BM = I, equivalently, in the closed-loop
system (5), y(t) = r(t).

Furthermore, if system (1) is of minimum phase,

then for any s € C/C~ we have

sl — A1 Bii Bis

rank —As; Bs 0

=ny +n37

where C~ denotes the open left-half complex
plane. Equivalently, for any s € C/C™,

rank [S[ — A+ BllB?,_llA31 Bl?] =n.

Hence, there exists a F5; such that

Ay + BiaFy — By B3 Az is stable. (21)

Consequently, the pencil (I — BG, A + BF) is
stable. 0O

Obviously, Theorem 3 leads to the following algo-
rithm.
Algorithm 2

Input: Matrices A € R"™* B € R"™™ (C €
RP*" with rank(B) = m and rank(C) = p.

Output: Matrices F', G and M (if possible) such
that (I — BG,A + BF) is regular and (6) is
true. Moreover, if system (1) is a minimum phase
system, then the pencil (I—BG, A+ BF) is stable.

Step 1. Perform Algorithm 1 to compute the
condensed form (11).

Step 2. Check the condition (14). If 72 # no, print

[1.206344159438  1.321960096349
0.506482306553  0.366181839670
0.1365278627717 0.024271298021
0.420151039289  0.094843585451
—0.190990609830 0.215875457226
| 0.191733656518  0.338611911504

0.365862989013

[ 0.63590385006071
0.20198206633489
0.01108929191805

—0.46797205902043
—0.34844892749690
—0.68633025953431
0.18694765209622 —0.10150567734668
0.36564819906248 —0.19590733500115
| —0.27363210336882 —0.17709023065489

C

—0.070193999292
—0.055466913467
—0.183531151211
—0.172245698140
—0.393623303377

sEy3 — Ags
0 B3, C5

”Problem 1 is unsolvable”. Otherwise, continue.

Step 3. Compute the SVD of Bs; to get orthogonal
matrices P and @) such that

o1
B31:P2Q72: 7012"'20—1)7
Op
and consequently compute
1/0’1
[Gi2 Gi3] = Q7T ) PT [Esy Es3],
1/op

[Fi1 Fiy Fis]
1/01

-Q" - PT [ A3 Ass Ass — B3iCs ).
1/op

Then compute matrices F', G and M by (20), in

which, if system (1) is of minimum phase, then

F>, is chosen such that (21) is satisfied, otherwise,

take Fy; = 0. Output F, G and M. 0O

Algorithm 2 above is implemented using only or-
thogonal transformations such as QR factoriza-
tions and SVD and hence is numerically reliable.

In the following we give an example to show
how Algorithm 2 works. All computations are
carried out by Matlab 5.0 with IEEE standard
(machine precision is about 1071%). and the rank
of any matrix D involved is determined by Matlab
command rank(D,€) with e = 10719,

Ezxample 1. Let

—1.173607249816 —0.367241830856 —0.547729656741
0.472483295591  —0.160109780244 0.186924676262
0.108953190549  0.450060455414  0.159973220468
0.466255223560  0.011420903083 —0.185891774863 | ’
0.094465864922  —0.019804218221 —0.104017150961
—0.208692060043 —0.102823318310 —0.257403185168

0.75859364642821
0.10173082031191
—0.38880214265178
0.20051818208883 ’
—0.09189634842298
—0.39867801744857

| —0.1592698467275 —0.2380038254552 0.1745758951970 0.4594147934043 —0.0262624756805 0.4321893414889
~ | —0.2052107572932 0.0366962032256 0.0342299110418 0.6852435391356 —0.0520288124304 0.1012192706910 |



First we perform Algorithm 1 to compute the form
(11) and we get n; = fis = np = 2 and!

3. CONCLUSIONS

In this paper we have studied the row-by-row de-
coupling problem of linear time-invariant systems

ggigi 8;3383 8??23 by proportional and derivative state feedback and
0 0 0 developed a numerical method to compute the
UBW = 0 0 0 , desired feedback matrices. Our method is only
01708 043931 0 based on orthogonal transformations and hence
0.9943 0.3400] 0 is numerically reliable. A numerical example has
) ) been given to illustrate the proposed method.
oV — {0 0‘0 0‘0.5548 0.4508]
0 0{0 0]{0.1210 0.7159 |’

s —0.6288 —0.5751 |—0.3840 —0.0158 —0.6315 —0.3533

—0.1338 s—0.4514|-0.6831 —0.0164 —0.7176 —0.1536

0 0 —0.0928 —0.6108s — 0.1901|—0.7918s — 0.6927 —0.6756
Usl = AV = 0 0 0 —0.5869 —0.0841 s —0.6992

—0.6299 —0.3127 |s—0.6124 —0.0576 —0.4544 —0.7275

—0.3705 —0.0129 |—-0.6085 —0.7918s— 0.3676|0.6108s — 0.4418 —0.4784

[ —0.497093157263
—0.221027101709
—0.316193968413

—0.227569427573
—0.613525610441
0.733249596854

—0.677662067520 —0.152184717061 —0.457033593785

0.398513058987
0.057603433355

0.023686554143
—0.208648907910

—0.186797105349
—0.154379269104

0.099220849248
—0.616819646288
—0.540074922596

1

U= —0.276034729894 0.143504403010 —0.006244804156 0.947325383701 —0.074973189735 0.011222960731
—0.514781969544 —0.101289851310 —0.144463827083 —0.068874029552 0.8337416009042 —0.063256647822
| —0.512709605309 0.057361677266 0.598109115139 —0.174858164590 —0.177899242827 0.560250360705 |
[ —0.497093157263 —0.221027101709 —0.514781969544 0.599087194009 —0.062803654443 —0.276034729894-‘
—0.227569427573 —0.613525610441 —0.101289851310 —0.493285365406 —0.545540907341 0.143504403010

V= —0.677662067520 0.398513058987 —0.144463827083 —0.508758892489 0.319714026061 —0.006244804156

—0.152184717061
—0.457033593785
L 0.099220849248

0.023686554143 —0.068874029552
—0.186797105349 0.833741600904
—0.616819646288 —0.063256647822

0.265892639640
0.235152755572
—0.113722281442

0.058402471531
0.013575009184
0.769823766449

0.947325383701
—0.074973189735
0.011222960731 |

~0.48149542191810 0.71043067736433  0.51327420676630
—0.62722845600740 —0.68834978448020 0.36436113703389 4. REFERENCES

Bonilla Estrada, M., and M. Malabre (2000).
Proportional and derivative state feedback
decoupling of linear systems. IEEE Trans.
Automat. Control, 45, 730-733.

0.418317822628  2.044609623520 —1.968931972122 —0.204101716411 0.323010855939

F = | —0.256217923715 —1.343467383497 1.304658255032  0.122539811124
—0.209499754476 —0.969230984727 0.919821934914  0.112724474103

[—0.61216551899505 0.14650196881176 —0.77703960676905
W =

Because ny = fig, and the system (1) is of mini-
mum phase, so we perform Step 2 of Algorithm 2
to compute F', G and M and we obtain

2.313683418246
—0.211490657721 —1.526510278017 | ,
—0.147919148344 —1.076564856972

—0.730836474798 —0.282802902832 —0.856861959981 —0.004440326677 2.069342598530
0.853592009408

—0.637271486316

—0.082497412241 —0.139022779013 —0.598904807338 0.071416743549  0.915998387458
G =
—0.961609563658 —0.155262752608

—0.493754406301 ]
k

0.101902278569 —0.070171076357 0.158559016330

—0.48149542191810 0.71043067736433

—0.61216551899505 0.14650196881176
M =
—0.62722845600740 —0.68834978448020

It has been verified that for matrices F,G and M
above, the pencil (I — BG, A+ BF) is regular and
C(s(I — BG) — (A+ BF))"'BM = I. Moreover,
the pencil (I — BG, A + BF) is stable (its finite
eigenvalues are —1.6743 + 0.7785¢ and —1.6743 —
0.77854i.

1 Because of the space limitation, the elements in the
matrices U(sI — A)V, UBW and CV are described with
only 4 decimal digits.
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