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Abstract:  The present paper proposes a control-theoretic approach to design rate-
based controllers in order to flow-regulate the best-effort traffic through high-speed 
computer communication networks.  Classical control theory and Schur-Cohn 
stability test are exploited to design the traffic controllers for high-speed networks.  
The stability of closed-loop congestion controlled systems is analysed by utilizing 
Schur-Cohn stability criterion, which leads to certain necessary and sufficient 
stability condition under which the controlled network is asymptotically stable in 
terms of buffer occupancy. The proposed stability condition is then shown to be a 
key tool in designing a wide scope of adaptive controllers. Simulations are 
performed that show good performance of such controlled networks. Copyright © 
2002 IFAC 
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1. INTRODUCTION 
 
Congestion in a network is a state when the system 
performance degrades due to the saturation of network 
resources such as link capacities, processor cycles, 
and data buffers. Lacking congestion control gives 
rise to adverse effects including the long delay of 
packet or cell delivery, low throughput, and even 
possible network collapse. Congestion control has 
thus become a challenge in designing and managing a 
high-speed network due to ever-growing intensive 
network applications.   
In high-speed networks, e.g., Asynchronous Transfer 
Mode (ATM) switching networks, two basic classes 
of service are currently under investigation, namely 
reserved traffic with guaranteed service, and best-
effort service traffic, e.g. ABR (available-bit-rate) 
(Iliadis, 1995) service. Correspondingly, two classes 
of traffic control approaches have been proposed for 
high-speed networks, they are open-loop control and 
closed-loop control (Kung et al., 1994)  respectively. 
Open-loop control approach has some advantages in 
supporting real-time and delay-sensitive 
communication service such as CBR (constant-bit-
rate) service and VBR (variable-bit-rate) service. 
However, open-loop control is not suitable for dealing 
with best-effort traffic due to the fact that bandwidth 
requirements for this kind of traffic can be 
unpredictable and variable over time. For the best-
effort traffic, it is shown (Kung et al., 1994;  Yang 
and Reddy, 1995) that the closed-loop feedback 

control provides the relatively more effective solution 
to bandwidth sharing among all competing users. Two 
types of control mechanisms have been used in 
closed-loop control, i.e., window control and rate 
control. In the case of window control, a maximum 
number of cells (or packets) is specified that a source 
can transmit, the window size thus limits the 
maximum number of cells, and hence the source 
throughput, that can be transmitted in a round-trip 
interval; while the rate-based control, for example, 
forward explicit congestion notification (FECN) and 
backward explicit congestion notification (BECN) 
(Yang and Reddy, 1995), regulates the source rate 
based on feedback information on the buffer 
occupancy in the switching node. These kinds of 
control strategies are very effective in conventional 
packet-switched networks and attracting increasing 
research interests (Kalarov and Ramamurthy, 1997; 
Zhang et al., 2000). 
Stability of closed-loop system is critical in any 
congestion control scheme due to the fact that, 
propagation delay encountered in high-speed 
networks may cause the controllers and the whole 
network to operate at an unstable point. This yields 
the notorious oscillation problem that greatly 
degrades the network performance. Concerning this 
issue, some control-theoretic concepts were proposed 
in (Benmonhamed and Meekov, 1993) for ATM 
networks, and were further applied in Benmonhamed 
and Meekov (1994) and Kalarov  and Ramamurthy 
(1997). These approaches, however, usually require 
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an online turning of control parameters to ensure 
stability and good performance under different 
network conditions, which definitely bring 
inconvenience to actual network implementation. 
Mostly recently in Mascolo (2000) Smith’s principle 
was applied in designing a control law for ABR input 
rates in ATM networks.  Zhang et al. (2000) 
proposed a hop-by-hop congestion controller 
designing method, in which system stability was  met 
to the occasionally chosen controller. Such specially 
chosen controller guaranteed the requirement of 
system stability in this special occasion, but may not 
be able to meet other performance requirements of 
actual network in other circumstances, for example, 
to limit the duration of response time and maximize 
the throughput (Schwartz, 1996).  In Izmailov 
(1995), two linear feedback control algorithms have 
been proposed for the case of a single connection 
with a constant service rate. Pan et al. (1996) 
considered a single-controlled traffic source, sharing 
a bottleneck node with other sources, whereas H∞ 
control approach was used for designing the 
controller.  Although the issue of stability in 
modelling and analysing network congestion control 
system have been concerned in one way or another in 
the aforementioned publications, no explicit general 
stability condition has been obtained so far.  Such 
general statement of stability is considered 
(Schwartz, 1996) to be important in actual network 
congestion controller designing, for only on the basis 
of it can one choose a wide scope of controllers to 
meet a wide range of performance requirements.  
Concerning the rate-based congestion control 
schemes which are widely applied in high-speed  
switching networks, the present paper exploits 
classical control theory and Schur-Cohn stability 
criterion to design the traffic controllers for them.  
Specifically, the stability and transient response of 
closed-loop congestion-controlled systems are 
analysed by using Schur-Cohn stability criterion, 
which leads to certain sufficient and necessary 
stability condition under which the controlled  
switching network is asymptotically stable in terms 
of buffer occupancy.  The stability condition is then 
shown to be a key tool in designing a wide scope of 
adaptive controllers. Simulations are performed that 
show good performance of such controlled networks. 
  

2. NETWORK SYSTEM MODELING AND 
BASIC ANALYSES 

 
A data communication network generally consists of 
a number of source/destination nodes which are 
geographically distributed. Cells or packets 
generated at a source node are delivered to their 
destination through a series of intermediate nodes. In 
modelling the traffic through these nodes, one has to 
know the number of source/destination pairs and the 
rates at which these sources introduce cells or 
packets into the network. Figure 1 represents the 
continuous time system model which we are going to 

consider in the sequel. For the sake of simplicity, 
only one single switching node is considered, which 
is connected by two virtual connections (VCs). One 
VC carries the uncontrolled traffic (e.g., guaranteed 
traffic)  which is not throttled at the source node as 
long as it confirms to the specifications. The other 
one carries the controlled traffic (e.g., best-effort 
traffic) which can only be transmitted when there 
does not exist congestion in the network. The 
switching node has a limited buffer size K to store 
the incoming cells or packets and an output link with 
the capacity of )(tµ . There are two kinds of delays 
for the controlled VC: 1τ ′  is the input delay from the 
source node to the switch node and 2τ ′  is the 
feedback delay from the switch node to the source 
node. Let )(tw  denote the total uncontrolled traffic 
rate, and )(tq denotes the controlled traffic rate. 
Based on the buffer occupancy )(tx  which is 
measured and sent back to the source node every 
T seconds, )(tq  will be adjusted. 
Under the above notations and assumptions, the 
dynamics of a switching node in a network can be 
described by the following non-linear time-delayed 
equation (Benmonhamed and Meekov, 1993) 
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where the saturation function { }xSatK  is given by 
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Without loss of generality we only consider the case 
where the input delay 1τ ′  and the feedback delay 2τ ′  
are exactly integral multiples of T , i.e. , T11 ττ =′  , 

T22 ττ =′ , 1τ and 2τ are integers, for otherwise one 
can always add  small delays to the input delay and 
the feedback delay to achieve this. (1) can be further 
discredited into 
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Due to the fact that, ,)(0 KnTx ≤≤  (2) is 
subsequently written as 
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where  KTK )1( +=′ , )()( nTTqnT =λ  and 
)()( nTTwnTd =  denotes the packets (or cells) 

flowing into the network from the VC and flowing 
into the switch from the uncontrolled traffic 
respectively during the thn  interval of T , and 

)()( nTTnT µµ = denotes the number of packets (or 
cells) emitted from the switch node during  the thn  
interval of T . One further denotes 21 τττ += , and   

),())(()( 12 nTTnnTu µτλ −+=                             (4)                             
where )(1 nTµ  is the maximum number of packets 
allowed for the source node to transmit the data into 



the network in the thn  interval of T , and let 
),)(()()(ˆ 1 TnnTnT τµµµ −−=    one then has   
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3. STABILITY ANALYSIS AND DESIGN OF 

CONGESTION CONTROLLERS 
  
In this section, a control-theoretic approach to design 
a class of end-to-end rate-based congestion 
controllers will be presented, which is mainly based 
on the classical control theory and Schur-Cohn 
stability criterion. To investigate the stability of the 
network described by (5) with a proportional-like 
congestion controller being implemented, it has been 
shown in Benmonhamed and Meekov (1993) that it 
is suffice to study the locally asymptotical stability of 
the system by removing the saturation restriction 
which is posed on the network system (5).  There are 
two-fold reasons to do so, one is that a 
mathematically rigorous proof of stability of the 
system using Liapunov’s approach may be possible, 
but this seems not to give any significant insight into 
system structures; the other one is that this saturation 
non-linearity will not generally be activated for a 
network switch node with a reasonably large buffer 
size (Yang and Reddy, 1995).   We therefore focus 
our attention on the network model (state equation) 
given by 
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Let the system output equation be described by  
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where )(iTu satisfies (4), and where the sum of the 
previous control inputs acts as the direct feed-through 
to the system. Note that this model is actually a 
modification to the proposed ones in the literatures 
(Benmonhamed and Meekov, 1993; 1994). The 
modifications made therein are (a) rather than assume 
the source emitting rate µ  to be a constant, we let it 
be a function of time, and (b) we have added a direct 
feed-through item to shape the system structure. As 
will seen later, such modified descriptions 
characterize the system structures in a more precisely 
manner. Thus we have 
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If one chooses the output feedback  
                    )()( nTynTu α= ,                                 (9)               

where the parameter α  is to be determined such that 
the closed-loop system is stable, then  
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The z-transformation of (10) is 
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3.1 Stability of the congestion controlled systems 
 
Considering in (8), )(z∆ is seen to be the 
characteristic polynomial (CP) of the closed-loop 
system. Stability of closed-loop system is critical in 
congestion controller designing due to the fact that, 
propagation delay encountered in high-speed 
networks may cause oscillation to the network that 
greatly degrades the network performance, while CP 
(12) is closely related to this issue. From a control 
theory point of view, in order to achieve asymptotic 
stability of the system it is necessary to choose the 
appropriate parameter α  such that all the zeros of 
CP (12) lie inside the unit circle. Such choices are 
obviously abound. As will be shown later, different 
choices of the parameter α  lead to specific 
congestion controlling schemes. Every kind of 
control scheme may have its own advantages in some 
aspect of performance, may in the meantime inherit 
some disadvantages in other aspects of network 
performance (see, for example, Yang and Reddy, 
1995)). From a rich resource of controlling schemes, 
one is able to choose the appropriate one to meet 
specific performance requirements for some 
particular networking purpose. It is, therefore, quite 
desirable to have a basic understanding to the CP 
(12). Concerning this, the following condition can be 
proposed on the basis of Schur-Cohn stability 
criterion (Rosenbrock, 1970). 
Theorem 1: The closed-loop congestion controlled 

system (6), (9) is stable if and only if .
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Proof : It is noted that, for the closed-loop 
congestion controlled system (6), (9) to be stable if 
and only if all the roots of its CP 
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lie inside the unit circle (Rosenbrock, 1970). By 
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seen to be equivalent to the condition that all the 
roots of )(1 z∆  lie inside the unit circle for )(z∆ has 
all the roots of )(1 z∆  together with a root ,0=z  
which is obvious inside the unit disc.  
      There are several computational procedures that 
aid us in determining if any of the roots of )(1 z∆  lie 
outside the unit circle. These procedures are called 
stability criteria. We use Schur-Cohn stability test to 
prove our statement. For this purpose, we construct a 
polynomial from )(1 z∆ by ),()( 1)1(

zzA
T
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which we find the reflection coefficient  
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thus we compute the lower-degree polynomials 
1, , ,1- , ),( Lττ=mzAmT according to the recursive 

equation 
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the reflection coefficients 1. , 1,- ,m , Lττ=mTK  The 
Schur-Cohn stability test states that the polynomial 

)(1 z∆  has all its roots inside the unit circle if and 
only if the coefficients  mTK satisfy the condition 

1<mTK for all 1. , 1,- ,m Lττ=  From 1)1( <+ TK τ , 
it follows  
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from which one knows 
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With the above recursive process continuing, one  
finally arrives 
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Considering in (13-16) and by using Schur-Cohn  
stability test one concludes the proof.          # 
Remark 1: The above result displays a general 
condition on the parameter α in order for the closed-
loop congestion-controlled systems to be stable. This 
then leads to a class of congestion controllers as will 
be described in the next subsection. From them one is 
able to choose the specific control algorithms to meet 
relevant performance requirements in networking 
engineering applications. The importance of this 
approach will become evident from the simulation 
results presented in the sequel. 
 
3.2 Design of rate-based congestion controllers 
 
We next study the designing of end-to-end rate-based 
congestion controller. The aim of congestion control 
is to regulate the source rate based on feedback 
information on the buffer occupancy in the switching 
node. Based on the observation made in Theorem 1, 
it is established that the following control-theoretic 
algorithms can flow-regulate the best-effort service 
and guaranteed service traffic through high-speed 
networks. 

Theorem 2: For any 
2

1
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described by (6), the source rate is regulated by the 
following algorithm  
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Proof: Theorem 1 states that the congestion-

controlled network system is stable if 
2
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Considering in (4), (7) and (9), one has 
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One thus concludes this proof.             # 
Remark 2: Compared to the known approaches in 
Iliadis (1995), Benmonhamed and Meekov, (1994) 
and Kalarov and Ramamurthy (1997), the 
fundamental contribution of the above theorem lies in 



the fact that, it has actually proposed a class of 
congestion controllers to regulate the source rate in 
the network. All these congestion controllers meet 
the prerequisite i.e., the stability of the closed-loop 
systems. This class of controllers is specific to the 
parameter α , which can be further specified by 
evaluating simulation results of network 
performance. Besides the stability of closed-loop 
network system, any efficient congestion control 
algorithm should also address the network 
performance issues such as the greediness 
(throughput), the response duration of buffer 
occupancy and the power.  From this rich resource of 
control schemes, one is thus able to choose the 
appropriate one to meet specific performance 
requirements for some particular networking 
engineering purpose. This mechanism is clearly seen 
from the following simulation and performance 
evaluation. 
 

4.   SIMULATION STUDIES 
 

 Since the task of congestion control is to regulate the 
source rate over time, we are particularly interested in 
analyzing the transient behaviors of the network. The 
transient behaviors of the network include the 
fluctuations of buffer occupancy and the greediness 
of the switch node, which are the main concern in the 
performance analysis. From a control theoretic point 
of view, even if the closed-loop systems are stable, 
fluctuations may still arise. Congestion-controlled 
systems are generally feedback systems which can 
sometimes sustain a limited range of self-excited 
fluctuations. However, excessive fluctuations may 
cause problems to actual network design. For 
example, large fluctuations of buffer occupancy call 
for a large buffer size. Implementing large buffers 
has several disadvantages. Besides increasing the 
cost, large buffers also increase the queuing delay in 
the bottleneck switching nodes, which may severely 
degrade the performance of delay-sensitive 
applications (see, Schwartz, 1996). Furthermore, to 
keep the controllers have a high utilization, and it is 
desirable to have the source rate as nearly as possible 
to the allocated rate so as to make the source greedy.  
To evaluate and characterize the greediness of source 
node, the following mathematical measure is 
suggested to use, i.e.,  

).()()()( nTdnTnTv −−=∆ λµ                     (18)                               
This is the balance between the out-flowing rate and 
the total (controllable and uncontrollable) in-flowing 
rates. 
Simulation has been performed on the model given 
by (5), where the bottleneck switch has a constant 
capacity of ,300)( KbpsnT =µ  and the sampling 
time .sec1=T  We assume that the maximum 
allocated rate )(1 nTµ equal to the switch capacity 

)(nTµ . The input delay sec 51 m=τ and the 
feedback delay .sec 32 m=τ  The total round-trip 
delay is thus .sec 8 m=τ  Theorem 1 tells us any 

parameter 1.0<α  is sufficient for the closed-loop 
systems to be stable. Figure 2, 3 and 4 show the 
transient behaviors of the network fed by a 
congestion-controlled source based on different 
values of 10  and  0.2  ,2.1 −=−=−= ααα  in control 
algorithms (17) respectively. In Figure 2, 3, and 4, 
figure (a) shows the uncontrolled traffic rate )(nTd , 
figure (b) shows the controlled traffic rate )(nTλ , 
figure (c) shows the greediness of the source node, 
and (d) shows the dynamic of the buffer occupancy 
under the above three different controlling schemes. 
Attention should be paid to figure 2(c), 3(c) and 4(c). 
They show that those balances between the out-
flowing rate and the (controllable and uncontrollable) 
in-flowing rates are zero except at some points where 
there are some glitches. These glitches are produced 
due to the delay in the response of the controlled 
input )(nTλ to the uncontrolled input )(nTd . At 
these glitches, the source node is not greedy.  
Obviously, the narrower the glitch is, the better the 
control scheme is. Observation in Fig. 2(c), 3(c), 4(c), 
one can see that, as α decreases from 2.1−  to 10− , 
the glitches become bigger and wider. Observation in 
Fig. 2(d), 3(d), 4(d), one can also see that, as 
α decreases from 2.1−  to 10− , the oscillations 
arising therein become heavier. Considering the 
simulation results in overall, one can draw a 
conclusion that, among the above three control 
schemes, the case corresponding to 2.1−=α  is the 
best efficient one due to the fact that, the oscillations 
arising in buffer occupancy and controllers are mild 
and )(υ∆ is mostly approach to zero thus the source 
node is mostly greedy in this case. 
 

5. CONCLUSIONS 
     
Classical control theory and Schur-Cohn criterion 
have been used as key tools for designing effective 
congestion controllers for high-speed networks. A 
class of end-to-end rate-based congestion controllers 
has actually been proposed that have satisfied the 
relevant stability condition. Further, ideas have been 
presented on how to choose the mostly desirable 
controller from this class to meet more specific 
performance requirements. Mathematical analysis 
and simulation results show the validity of this 
approach. Future research would focus on the issue of 
guaranteeing the required QoS in real time 
communications and investigations into meeting 
more performance requirements such as the power 
and the throughput of the congestion-controlled 
networks. 
  
REFERENCES 
 
Iliadis, I (1995). A new feedback congestion control          
         policy for long propagation delays, IEEE         
         Journal   on Selected Areas in Communications,    
         13, 1284-1295. 



 Kung, H., Blackwell T. and A. Chapman (1994). 
Credit based flow control for ATM networks: 
credit update protocol, adaptive credit 
allocation, and  statistical multiplexing, Proc. 
SIGCOMM’94, 101-114. 

Zhang,  H., Yang, O. W. and Mouftah,  H. (2000).  A       
          hop-by-hop flow controller for a virtual path,     
          Computer Networks, 32, 99-119.  
Yang, C. Q. and Reddy, A. A. S. (1995). A taxonomy         
          for congestion control algorithms in packet       
          switching networks, IEEE Network,  9, 34-45.  
Schwartz, M. (1996). Broadband Integrated             
          Networks,  Prentice Hall PTR. 
Benmohamed, L. and Meekov,  S. M. (1993).  

Feedback control of congestion in packet 
switching networks:  the case of a single 
congested node, IEEE/ACM   Transactions on 
Networking,  1, 693-707. 

Benmohamed, L. and Meekov,  S. M. (1994). 
Feedback control of congestion in packet 
switching networks: the case of multiple 
congested node, in Proc. Am. Contr. Conf., 
Baltimore, MD. 

 Kalarov A. and Ramamurthy G. (1997). A control   
         theoretic approach to the design of closed loop        
         rate based flow control for high speed ATM     
         networks,  in Proc. IEEE Infocom’97, Kobe,         
         Japan. 
Mascolo, S. (2000). Smith’s principle for congestion 

control in high-speed data networks, IEEE 
Transactions on Automatic Control, 45, 358-
364. 

Izmailov, R., Adaptive feedback control algorithms 
for large data transfer in high-speed networks, 
IEEE Trans. Automat. Contr., 40, pp.1469-1471, 
Aug. 1995. 

Pan, Z., Altman, E., and Basar T. (1996), Robust 
adaptive flow control in high speed 
telecommunication networks, in Proc. 35th  
Conf. Decision Contr., Kobe, Japan. 

Filipiak J.(1988). Modeling and Control of Dynamic 
Flows in Communication Networks, Springer-
Verlag. 

Rosenbrock, H. H. (1970), State Space and                      
        Multivariable   Theory, London: Nelson. 
Tan Liansheng (1999), Structural and Behavioral      
        Analyses to Linear Multivariable Control            
        Systems, PhD Thesis, Loughborough      
        University, UK. 
Pugh,  A. C., Tan Liansheng (2000), A generalized  
        chain-scattering representation and its            
        algebraic system properties, IEEE         
       Transactions on   Automatic Control,  45, 1002-      
        1007. 
Tan Liansheng, Pugh A. C. (1999).  A note on the             
        solution of regular PMDs, International Journal     
        of Control,  72, 1235-1248. 

 

 

)(tq

'
1τ

'
2τ

)(tx

)(tw

)( tµ

  
Figure 1: A source nodel’s congestion control model 
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Figure 2: Performance of a single source node 
   implemented by a congestion controller ( 2.1−=α ) 
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Figure 3: Performance of a single source node  
                implemented by a congestion controller         
                ( 0.2−=α )  
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Figure 4: Performance of a single source node    
                implemented by a congestion controller     
                ( 0.10−=α ) 


