
EVENTS AS A KEY OF AN AUTONOMOUS ROBOT CONTROLLER

J.D. Carbou, D. Andreu, P. Fraisse
LIRMM, Robotic Department

161 rue Ada, 34392 Montpellier, France
(e-mail: andreu@lirmm.fr, tel: (33) 04 67 41 85 15)

Abstract: The paper focuses on the development of an event-driven autonomous robot
controller. Such systems being intrinsically hybrid, the model that is exposed is a
hybrid model based on the cooperation of a discrete-event part and a continuous part.
Then, continuous and discrete models are concurrently dealt with; the articulation
model's different parts results from event interactions. According to this event-based
conception, the controller architecture is hierarchically organized in three levels. The
supervisory control is based on the management of contexts of execution. Copyright
© 2002 IFAC

Keywords: event-driven autonomous controller, architecture, hybrid modeling.

1. INTRODUCTION

Mobile manipulators, aimed to operate in hazardous
and/or dangerous environments, are used to replace
the operator when this intervention would have been
difficult, unsafe or impossible. A typical example is a
terrestrial mobile manipulator handling explosive
charges in building sites. Such systems are often
remotely operated but communication limitations -
varying network time delays (Leleve et al. 2000) - do
not allow the operator intervention to be directly
done at the lower level (real-time control one). So the
system must come with an autonomous controller at
least able to do on-line adaptation, thus allowing the
mission programming or the tele-operation to be
done at a high level of abstraction.

This controller design is based on the dichotomy of
the global system into a set of independent or
coupled subsystems. They can be exploited in a
coordinated way (concurrent execution with
synchronization) or in a mutual exclusive one,
depending on the effective context of execution. A
context of execution, also called a situation, is
characterized by the robot configuration, the current
objective of the mission and the environment state.
Consider for instance the case of our terrestrial
mobile manipulator that is a terrestrial vehicle (6
directive and propulsive wheels electric vehicle)
equipped with a rear PUMA 560 arm. Hence
composed by two subsystems, a vehicle on the one
hand and a robotic arm on the other. When motion
and manipulation are not simultaneously required,
depending on the mission objective, independent
control laws can be used. But in some cases
combining both subsystems to perform specific
motions can be interesting. The simultaneous motion
of both the vehicle and the arm in order to go from an
initial position/orientation of the end-effector to a
final one is performed using a control law involving
state variables of the two subsystems. In such case,
the robot control is not expressed as the coordination
of independent actions on each subsystem

(concurrently executed) but as a control mode
strongly coupling them. Thus, the controller must use
different methods to control the mobile manipulator
according to the requirements of the mission
objective. Moreover, when dealing with autonomous
robots, the controller must also be able to face
unpredictable constraints (obstacles) in reaching the
given goal. As a consequence, the method of
controlling the robot also depends on the robot
configuration as well as on the environment state.

So, this autonomous robot controller design is based
on contexts of execution. To each subsystem or
combination of subsystems (this set being
intrinsically restricted) is associated a context
manager in charge of selecting the appropriated
control method. This context manager, which ensures
supervisory control, will only be described for the
arm subsystem. However, the overall system
architecture follows the same principle.

Furthermore, when dealing with such intrinsically
hybrid systems the coexistence of two different
"worlds", continuous and discrete ones, must be
taken into account. From a modeling point of view,
continuous (state-space equations) and discrete (Petri
Nets, PN) models must be concurrently dealt with.
From an implementation point of view, the controller
has synchronous (sampled) and asynchronous
(sporadic) processes. A control architecture of these
complex systems is thus offered as well as a hybrid
modeling based on PN. The impact of this
characteristic is considered both for the controller
architecture design and the controller specification
representation.

This paper is organized as follows. The controller
architecture is described in the next section. Both
design and real-time considerations are evoked. In a
third section, a hybrid modeling approach is
presented and illustrated on the arm controller of the
mobile manipulator on which this work has been
applied.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

2. THE CONTROLLER ARCHITECTURE

2.1. The controller design

Several levels of abstraction and a high degree of
modularity are required to face the process
complexity: the control architecture is hierarchically
structured (Alami et al. 1998, Santos et al. 2000,
Simon et al. 1994, Borelly et al. 1998).

It is composed of several modules, organized in three
layers; namely, the mission layer (irrelevant to this
paper), the supervisory and execution control layers,
as depicted in Fig. 1. This organization is divided in
two levels of abstraction, even if structured in several
layers (Simon et al. 1998, Wang et al. 1991, Fleury
et al. 1994). The upper level, constituted by the
managers, is concerned with behavior's decisional
aspects system. The mission manager is working on
sequences of goals and precedence relationships
among them. As a supervisory controller, the context
manager implements tactical specifications on
execution module calls, switching and sequences
(each goal corresponding to a sequence of sub-goals).
The lower level is concerned with real-time
execution aspects of the system, the event based
supervisory and control loops belong to this level.
The context manager is at the interface of the two
levels; on the one hand it belongs to the upper one as
it is in charge of "local" decision-making, but on the
other hand it works under real-time reactivity
constraints.

The context manager has to handle exteroceptive
(obstacle) or proprioceptive (singularity) constraints.
So, it may sporadically be forced to leave the current
sub-goal to face the encountered constraint. Such an
unpredictable reaction usually implies the addition of
a context dependent sub-goal into a previously
established schedule (logical and temporal
arrangement) (Simon et al. 1998). The context
manager is not really like a sub-goal scheduler as it
deals only with the immediate sub-goal. The sub-goal
schedule is thus dynamically established according to
the context and the upper goal (memorized final
objective), so it is more an "adaptive sequence" than
a schedule. The sequences of sub-goals to execute in
order to achieve the upper goals, as well as
contextual sub-goal switching, are specified on the
control manager Petri Net based model. The effective
executed sequence reflects the autonomous control
switches, resulting from the "local" (context
manager) decision- making.

From an architectural point of view, the context
manager role, a tactical one, is consequently to guide
(adapt) the robot behavior by a dynamical
configuration of the synchronous real-time control
modules according to the effective situation (i.e. the
current context of execution). This approach
contributes to the robustness of the system and
preserves its reactivity.

2.2. An event-driven robot controller

In the case of a pure continuous system, supervisory
control is in charge of monitoring the system. Thus it
detects when it is no longer in its optimal state, and
acts on the local control law to compensate it. When
autonomous robots are involved, supervisory control
also has to select the appropriate control law,
according to the effective context of execution. It
then performs a one-line adaptation of the robot
behavior. The supervisory controller may be viewed
as enabling or disabling continuous systems (control
laws) according to a specified tactical sequencing of
sub-goals and a specified way of dealing with
unpredictable constraints (e.g. singularity). That
means that each control law performs, if enabled, a
local closed-loop control that can be started/ended at
any time by a supervisory control decision. The
sequence evolution then implies a control law
switching.

This evolution results from event occurrences such as
position reached, contact reached, singular
configuration, etc. However, for a given context of
execution, only a sub-set of events corresponds to
pertinent phenomenon. For instance, singular
configuration detection is not required when using a
joint space control law and obstacle presence has not
to be treated when the mobile gets stopped. This
means that only "significant" events can be
monitored when managing situations. An event
detection configuration is consequently performed
each time the context manager evolves. Such a
dynamical configuration is obtained by the definition
of the "selected" events from the open set of
specified types of events. Two types of event
observation functions carry on the event detection:
the event generator (EG) and the event estimators
(EE) (Andreu et al. 1996). The latter are dedicated to
particular events (model based detection). An EG (it
is more a functionality than a module, so several
event generators can be used) has to extract event
occurrences from periodic measures according to
given event generation rules. Crossing threshold by
one, or a set of, (sampled) continuous variable is a
usual rule of detection. An EE (also a functionality)
has to build event occurrences from model based
computation (cf. 3.3).

Fig 1: arm controller architecture

Sy
nc

hr
on

ou
s

As
yn

ch
ro

no
us

Mission manager

Context manager

CM CM …
EG EE

I/O Interface Module

EG: Event Generator
EE: Event Estimator
CM: Control Module

From a real-time point of view, the event detection is
at the interface between asynchronous and
synchronous worlds (Fig. 1). Events correspond to
sporadic phenomenon, whose occurrences are factual
rather than periodical. Their detection is carried on
periodic measures; it is an asynchronous notification
based on a synchronous system observation.

2.3. Control laws description

An open set of control laws (Degoulange et al. 1993)
has been developed according to the required
manipulator capabilities, and in terms of actions the
robot has to be able to perform.

The joint space position control law (CPA). This
control law, not sensible to singularities (singular
positions linked to the lining up of some axis of the
manipulator), is used to stop the manipulator, for
instance for commutation purposes. Indeed,
trajectory generation being locally computed (i.e.
within the control module), the arm is stopped while
switching in order to avoid latency effects, such as
unstability.

The joint space position control law referenced in the
task space (CPARC). Based on the CPA law, the
difference dwells in the task space defined final
point. This point is then converted in the joint space.
It has the advantage of allowing the operator to
define a motion in the task space, regardless of the
manipulator model. This law is used to deal with
singularities or to carry out any motion in a
unconstrained space (the prediction of the arm
trajectory in the task space not being immediate).

The hybrid position/force control law (CHP). The
cartesian space is divided into two complementary
and orthogonal spaces respectively the position and
force, whose selection is expressed by a matrix. This
law requires less computation time than CHE (see
below). It is used to perform regular motions or
surface following, but only in absence of constraint
on environment preservation. Indeed, if the force
control-loop breaks, there is no command left in the
direction of force regulated axis.

The external force control law (CHE). This law can
be used for the same goals as CHP, moreover all the
axis being regulated by the position control-loop, it
guarantees a non-destructive behavior, even in case
of force regulation error.

Impedance control law (CIMP). This particular law
allows getting a spring-damper like behavior. It is
used as such for palpation and contact searching
goals, as well as for cushioned transport.

3. HYBRID MODELING OF THE CONTROLLER

Automation of robotic systems raises difficult issues,
others than mechanical, sensor data processing and

computer architecture ones. The reason is that the
behavior results from interacting dynamics both
continuous and discrete (events). As a consequence,
when dealing with control, a comprehensive model
of such hybrid systems has to include both discrete
events and continuous aspects. Each of these worlds
has a different mathematical framework for its
description. Several approaches try to combine these
two frameworks into a single one able to describe
this mixed discrete/continuous behavior; an overview
of several approaches in hybrid systems is given in
(Antsaklis et al. 1998). Both aspects have not been
integrated in this work because it is better to combine
two well-established theories, each one being well
suited to describe one aspect of the system. So,
cooperation and interaction have been established
between the PN model of the discrete aspect of the
system, such as situations, and the continuous one for
the control law aspects. The articulation between the
two "worlds" is based on events.

PN provide a formalism which on one hand has a
high descriptive power (parallelism, choice,
interactions between distributed control entities,
incremental design, etc.) and on the other hand has a
strong theoretical basis (for analysis purposes for
instance). Moreover these models can be directly
executed (i.e. without any code translation) by means
of an inference engine usually called a "token
player". PN have already proved their suitability for
modeling robotic applications (Freeman 1991) and
have been widely used for analysis and performance
evaluation (Simon et al. 1994, Medeiros et al. 1996,
Lima et al. 1998) as well as for design and/or
execution (Causse et al. 1995, Wang et al. 1991,
Marco et al. 1996, Healey et al. 1996). In our case,
the class of PN used is Hybrid PN with Objects. This
class allows the description of both control flow
(model's structure) and data flow (objects carried on
the model) within a same model.

3.1. Hybrid Petri nets with objects

The class of PN used is the Hybrid PN with Objects
(H-PNO), defined by H-PNO=(PNO, Fc, Fe, Fj) with
PNO being the definition of Petri nets with objects. F
corresponds to different functions associated to the
net: Fc continuous (discrete-time) functions
associated to places, enabling functions Fe and
switching functions (junction functions) Fj associated
to transitions (Champagnat et al. 1998). The set of
places describes the states of the controller, to which
can be associated a continuous function to be
computed (active states are given by the PN
marking). Transitions describe events according to
which the controller's state evolves. A transition
enabling function defines the condition for the
corresponding event to occur (threshold crossing for
example). The switching function defines the effects
of the event occurrence in terms of continuous
variables updating (parameters, state variables, etc.).
It has to ensure a smooth switching between two

given continuous functions as control laws for
instance. The continuous variables are carried on by
attributes of the objects, whose updating is only
performed at transition firing time points. All the
modules, as well as their inherent interactions, are
specified by H-PNO. This homogeneous modeling
allows analysis of the whole application.

In order to avoid a cumbersome representation of PN
figures, only the structure of the H-PNO is drawn:
associated objects, functions, etc. are not shown.
Also some branches are described by aggregated
transitions (on the control module model) and models
are sometimes split into several different ones (on the
context manager model).

3.2. The Control Modules

A generic model of a control module, specified by
HPN with objects, is depicted on Fig. 2. It is
organized into several coupled blocks. Block (1) is
dedicated to request management: reception and
treatment of the objects <request> whose priorities
depend on the type of interaction. These interactions
between a control module and its upper level (the
context manager for instance) are described as
asynchronous communication based on the client-

server model. A generic control module owns a set of
defined services as program, start, stop, query and
kill possible requests (in a master-slave relation, the
control module being the slave). The module only
treats a program request if the latter is available (i.e.
in an inactive state). No re- programming of a control
module is allowed if it is still executing a control law.
Such a request allows to specify parameters values,
set points, periodicity, time out reaction, etc.
(information carried on the object token <request>).
A query request is used to know the control module
state as well as its parameter values (the status report
corresponds to the object token <sr>). If this request
is received while performing a control law, it is
treated only in the remaining time (i.e. when the
control cycle has been executed). Start, stop and kill
requests are purely asynchronous without response
exchanges; the formers respectively enable and
disable the clocks (disabling thus the control law
execution). The latter kill correctly the process
corresponding to the given real-time task. Whatever
the sequence, on which constraints can be specified,
all the requests are immediately taken into account
(reception), even if their effective treatment can be
delayed as it is the case for a query request for
instance (low priority).

Fig 2: PN based generic model of control modules

Blocks (2) and (3) respectively correspond to the
control law execution (periodicity defined by Hc) and
the watchdog (periodicity defined by To). Signals To
and Hc (time out and clock) are issued from
dynamically programmed timers. Notice that the
place called "control law" is a place associating the
control law to be executed. From an implementation
point of view, it is an aggregated representation of
the sequence of computation performed by the
control law. This sequence, described by short
duration steps, can momentarily or definitively be
interrupted at any time (between each step). Such
interruptions may occur when receiving a request.
Blocks (4) and (5) represent external inputs and
outputs updating; they do not belong to the control
module.

3.3. The Observation Modules

The illustrated observation module is the one in
charge of singularity detection (SI).

Figure 3: PN based singularity estimator module

It is configured by means of a request whose
treatment enables the computation of the associated

off

<request>

<SI event>

on h

Set of equations to be computed
for SI event detection

S1=Rl4*sin(θ2+θ3)-D3*cos(θ2)
S2=cos(θ3)
S3=sin(θ5)

Enabling function
S1< threshold
S2<threshold
S3 <threshold

Inputs
updating

Outputs
updating

< request>
(mode, parameters, setpoints,…)

signal
abort

ignore
prog

stop
query start

enable

HC TO

disable

HC TO
disable
HC TO

set get

(3) (2) (1)

control
law

< SR >

(5)

kill

end
(4)

TO

HC <state>
 step, parameters, setpoints, …

model and set the periodic activation clock (Fig. 3).
The event estimation is automatically stopped as
soon as the event has been detected.

3.4. The Context Manager

The context manager receives the goals to achieve
from the mission manager. Then it has to send
requests to the event detection and control modules
and to program, enable/start or disable/stop them
according to the current situation. For presentation
reasons, the context manager PN model is presented
in two parts which have to be merged together to get
the overall model (except the interactions with the
upper and lower levels). The first part of the model is
dedicated to control law switches due to intrinsic
singularities (Fig. 4): such commutations imposed on
the context may be seen as autonomous jumps. The
second one (Fig. 5) represents all the sequencing of
control law calls in order to perform the mission
goal: these tactical commutations correspond to
controlled jumps.

Each thick line place represents an abstract view of
its associated control module. If the place is marked
by the (unique) object token <objective> (mission
goal, point to reach, sub-goals, etc.), the
corresponding control module is activated; only one
of them can possibly be active at the same time
(structural property). All the gray transitions of the
singularity management part of the model (transitions
t30 to t35 on Fig. 4) are uncontrollable as their firing

correspond to autonomous jumps. All the gray
transitions of the tactical sequencing of sub-goals
part of the model (transitions t38 to t43 on Fig. 5) are
controllable as their firing correspond to controlled
jumps. These gray transitions are equivalent to
macro-transitions; their firing implies the execution
of an underlying sequence (right schema of Fig. 4-5).
The firing of the first transition induces the
commutation to the CPA law for stopping the arm.
When it gets stopped, the second transition may be
fired in order to activate the new selected control
module. Activation and desactivation of control
modules, and event detection configuration (not
represented on the figures) are performed when such
transitions are fired. Before to activate the new
control module, the junction function associated to
the fired transition, is computed to correctly initialise
variables of the new control law. For instance
consider the switch from CPA to CHP. The
intialisation of the CHP integral term (Ti) is done
when firing the transition t30 according to the given
junction function : Ti = Uc/Ki, where Uc is the last
command vector applied by CPA and Ki the integral
gain of CHP. Junction functions, often more
complex, are defined for all the possible control law
switches, i.e. for all the corresponding transitions.

Some simulation results, corresponding to a
commutation from CHP to CPARC (necessarily done
through CPA) in order to deal with a singularity, are
shown on figure 6. The overall stability is preserved
in spite of control law switching.

Fig 4: PN based singularity management (model to be merged with fig.5)

Fig 5: PN based tactical sequencing (model to be merged with fig. 4)

CPA

Associated Events

 t38, t42 : enabled if contact reached and
 no palpation goal
 t39, t40, t41: enabled if position reached
 t43 : enabled if contact reached and
 palpation goal. CPARC

t43

CIMP

CHECHP

surf. track

surf. track
t38

t39

t40
t41

t42

surf. track

surf. track

CPA

Associated Events

 t30, t33, t35 : singularity crossed over.
 t31, t32, t34: singularity occurrence.
 t36, t37: unrecoverable singularity
 occurrence.

t37CHE

t35

CIMP

CHP

CPARC

t32

t31
t34

t33

t30

surf. track

t36

S R S R

surf. track

Fig 6: Simulation results of a commutation from CHP to CPARC

4. CONCLUSION

In this paper we have described a new approach to
structure an autonomous robot controller based on
context management. Events are the key of an
architecture composed of synchronous and
asynchronous layers. A modeling technique for such
hybrid systems has been proposed: it is based on
Hybrid Petri Nets with Objects that associate
different functions to the node of the net. A real-time
"token player" of H-PNO is under development.

5. REFERENCES

Andreu D., J.C. Pascal, R. Valette (1996). Events as

a key of a batch process control system. IEEE
CESA'96, pp. 297-302, Lille - France, July 1996.

Antsaklis P., X. Koutsoukos, J. Zaytoon (1998). On
hybrid control of complex systems: a survey.
ADMP'98, European Journal of Automation, vol.
32, n°9-10, pp. 1023-1045,1998.

Alami R., R. Chatila, S. Fleury, M. Ghallab, F.
Ingrand (1998). An architecture for autonomy.
International journal of robotics research, vol 17,
n. 4, pp. 315-337, 1998.

Borrelly JJ., E. Costes-Maniere, B. Espiau, K.
Kapellos, R. Pissart Gibollet, D. Simon, N. Turro
(1998). The ORCCAD architecture. International
journal of robotics research, vol 17, n. 4, pp. 338-
359, 1998.

Causse O., H.I. Christensen (1995). Hierarchical
control design based on Petri net modeling for an
autonomous mobile robot. Intelligent
Autonomous Systems, U. Rembold Eds., IOS
Press, 1995

Champagnat R., P. Esteban, H. Pingaud, R. Valette
(1998). Modeling and simulation of hybrid
systems through Pr/Tr PN-DAE Model.
ADMP'98, pp. 131-137, Reims - France, March
1998.

Degoulange E., P. Dauchez, F. Pierrot (1993).
Determination of a force control law for an
industrial robot in contact with a rigid
environment. IEEE SMC'93, vol 2, pp. 270-275,
Le Touquet - France, October 1993.

Fleury S., M; Herrb, R. Chatila (1994). Design of a
modular architecture for autonomous robot. IEEE
ICRA'94, San Diego - USA, May 1994.

Freedman P. (1994). Time, Petri nets and robotics.
IEEE Trans. on Robotics and Automation, vol. 7,
n°4, pp. 47-433, August 1991.

Healey A.J., D.B. Marco, P. Oliviera, A. Pascoal, V.
Silva, C. Silvestre (1996). Strategic level mission
control - An evaluation of CORAL and PROLOG
implementations for mission control
specifications. IARP'96, workshop on underwater
robotics, Toulon-France, March 1996.

Leleve A., P. Dauchez, P. Fraisse, F. Pierrot (2000).
An enhanced Mobile Manipulator. WAC'2000,
Hawaii-USA, June 2000.

Lima P., H. Gracio, V. Veiga, A. Karlsson (1998).
Petri nets for Modeling and Coordination of
Robotic Tasks. IEEE SMC, pp. 190-195, San
Diego - USA, October 1998.

Marco D.B., A.J. Healey, R.B. McGhee (1996).
Autonomous underwater vehicles: hybrid control
of mission and motion. Autonomous Robots 3, pp.
169-186, Kluwer Academic Publishers, 1996.

Medeiros A.D., R. chatila, S. Fleury (1996).
Specification and validation of a control
architecture for autonomous mobile robots. IEEE
IRS'96, pp.162-169, Osaka - Japan , Nov. 1996.

Santos V.M., J.P. Castro, M.I. Ribeiro (2000). A
nested-loop architecture for mobile robot
navigation. Int. journal of robotics research, vol
19, n. 12, pp. 1218-1235, 2000.

Simon D., P. Freedman, E. Castillo (1994).
Analyzing the temporal behavior of real-time
closed-loop robotic tasks. IEEE ICRA'94, pp.
841-847, San Diego - USA, 1994.

Simon D., K. Kapellos, B. Espiau (1998)
Formalization of hybrid structures in robot
controllers : the ORCCAD approach. INCOM'98,
pp. 87-92, Nancy-Metz - France, June 1998.

Wang F.Y., K.J. Kyriakopoulos (1991). A Petri-net
coordination model for an intelligent mobile
robot. IEEE SMC, vol. 21, n° 4, July 1991.

X cart. Pos. Y cart. Pos. Z cart. Pos.

