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Abstract: The paper focuses on the development of an event-driven autonomous robot 
controller. Such systems being intrinsically hybrid, the model that is exposed is a 
hybrid model based on the cooperation of a discrete-event part and a continuous part. 
Then, continuous and discrete models are concurrently dealt with; the articulation 
model's different parts results from event interactions. According to this event-based 
conception, the controller architecture is hierarchically organized in three levels. The 
supervisory control is based on the management of contexts of execution. Copyright 
© 2002 IFAC 
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1. INTRODUCTION 
 
Mobile manipulators, aimed to operate in hazardous 
and/or dangerous environments, are used to replace 
the operator when this intervention would have been 
difficult, unsafe or impossible. A typical example is a 
terrestrial mobile manipulator handling explosive 
charges in building sites. Such systems are often 
remotely operated but communication limitations - 
varying network time delays (Leleve et al. 2000) - do 
not allow the operator intervention to be directly 
done at the lower level (real-time control one). So the 
system must come with an autonomous controller at 
least able to do on-line adaptation, thus allowing the 
mission programming or the tele-operation to be 
done at a high level of abstraction. 
 
This controller design is based on the dichotomy of 
the global system into a set of independent or 
coupled subsystems. They can be exploited in a 
coordinated way (concurrent execution with 
synchronization) or in a mutual exclusive one, 
depending on the effective context of execution. A 
context of execution, also called a situation, is 
characterized by the robot configuration, the current 
objective of the mission and the environment state. 
Consider for instance the case of our terrestrial 
mobile manipulator that is a terrestrial vehicle (6 
directive and propulsive wheels electric vehicle) 
equipped with a rear PUMA 560 arm. Hence 
composed by two subsystems, a vehicle on the one 
hand and a robotic arm on the other. When motion 
and manipulation are not simultaneously required, 
depending on the mission objective, independent 
control laws can be used. But in some cases 
combining both subsystems to perform specific 
motions can be interesting. The simultaneous motion 
of both the vehicle and the arm in order to go from an 
initial position/orientation of the end-effector to a 
final one is performed using a control law involving 
state variables of the two subsystems. In such case, 
the robot control is not expressed as the coordination 
of independent actions on each subsystem 

(concurrently executed) but as a control mode 
strongly coupling them. Thus, the controller must use 
different methods to control the mobile manipulator 
according to the requirements of the mission 
objective. Moreover, when dealing with autonomous 
robots, the controller must also be able to face 
unpredictable constraints (obstacles) in reaching the 
given goal. As a consequence, the method of 
controlling the robot also depends on the robot 
configuration as well as on the environment state. 
 
So, this autonomous robot controller design is based 
on contexts of execution. To each subsystem or 
combination of subsystems (this set being 
intrinsically restricted) is associated a context 
manager in charge of selecting the appropriated 
control method. This context manager, which ensures 
supervisory control, will only be described for the 
arm subsystem. However, the overall system 
architecture follows the same principle. 
 
Furthermore, when dealing with such intrinsically 
hybrid systems the coexistence of two different 
"worlds", continuous and discrete ones, must be 
taken into account. From a modeling point of view, 
continuous (state-space equations) and discrete (Petri 
Nets, PN) models must be concurrently dealt with. 
From an implementation point of view, the controller 
has synchronous (sampled) and asynchronous 
(sporadic) processes. A control architecture of these 
complex systems is thus offered as well as a hybrid 
modeling based on PN. The impact of this 
characteristic is considered both for the controller 
architecture design and the controller specification 
representation. 
 
This paper is organized as follows. The controller 
architecture is described in the next section. Both 
design and real-time considerations are evoked. In a 
third section, a hybrid modeling approach is 
presented and illustrated on the arm controller of the 
mobile manipulator on which this work has been 
applied. 
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2. THE CONTROLLER ARCHITECTURE 
 
 
2.1. The controller design 
 
Several levels of abstraction and a high degree of 
modularity are required to face the process 
complexity: the control architecture is hierarchically 
structured (Alami et al. 1998, Santos et al. 2000, 
Simon et al. 1994, Borelly et al. 1998). 
 
It is composed of several modules, organized in three 
layers; namely, the mission layer (irrelevant to this 
paper), the supervisory and execution control layers, 
as depicted in Fig. 1. This organization is divided in 
two levels of abstraction, even if structured in several 
layers (Simon et al. 1998, Wang et al. 1991, Fleury 
et al. 1994). The upper level, constituted by the 
managers, is concerned with behavior's decisional 
aspects system. The mission manager is working on 
sequences of goals and precedence relationships 
among them. As a supervisory controller, the context 
manager implements tactical specifications on 
execution module calls, switching and sequences 
(each goal corresponding to a sequence of sub-goals). 
The lower level is concerned with real-time 
execution aspects of the system, the event based 
supervisory and control loops belong to this level. 
The context manager is at the interface of the two 
levels; on the one hand it belongs to the upper one as 
it is in charge of "local" decision-making, but on the 
other hand it works under real-time reactivity 
constraints. 
 
The context manager has to handle exteroceptive 
(obstacle) or proprioceptive (singularity) constraints. 
So, it may sporadically be forced to leave the current 
sub-goal to face the encountered constraint. Such an 
unpredictable reaction usually implies the addition of 
a context dependent sub-goal into a previously 
established schedule (logical and temporal 
arrangement) (Simon et al. 1998). The context 
manager is not really like a sub-goal scheduler as it 
deals only with the immediate sub-goal. The sub-goal 
schedule is thus dynamically established according to 
the context and the upper goal (memorized final 
objective), so it is more an "adaptive sequence" than 
a schedule. The sequences of sub-goals to execute in 
order to achieve the upper goals, as well as 
contextual sub-goal switching, are specified on the 
control manager Petri Net based model. The effective 
executed sequence reflects the autonomous control 
switches, resulting from the "local" (context 
manager) decision- making.  
 
From an architectural point of view, the context 
manager role, a tactical one, is consequently to guide 
(adapt) the robot behavior by a dynamical 
configuration of the synchronous real-time control 
modules according to the effective situation (i.e. the 
current context of execution). This approach 
contributes to the robustness of the system and 
preserves its reactivity. 

2.2. An event-driven robot controller 
 
In the case of a pure continuous system, supervisory 
control is in charge of monitoring the system. Thus it 
detects when it is no longer in its optimal state, and 
acts on the local control law to compensate it. When 
autonomous robots are involved, supervisory control 
also has to select the appropriate control law, 
according to the effective context of execution. It 
then performs a one-line adaptation of the robot 
behavior. The supervisory controller may be viewed 
as enabling or disabling continuous systems (control 
laws) according to a specified tactical sequencing of 
sub-goals and a specified way of dealing with 
unpredictable constraints (e.g. singularity). That 
means that each control law performs, if enabled, a 
local closed-loop control that can be started/ended at 
any time by a supervisory control decision. The 
sequence evolution then implies a control law 
switching. 
 
This evolution results from event occurrences such as 
position reached, contact reached, singular 
configuration, etc. However, for a given context of 
execution, only a sub-set of events corresponds to 
pertinent phenomenon. For instance, singular 
configuration detection is not required when using a 
joint space control law and obstacle presence has not 
to be treated when the mobile gets stopped. This 
means that only "significant" events can be 
monitored when managing situations. An event 
detection configuration is consequently performed 
each time the context manager evolves. Such a 
dynamical configuration is obtained by the definition 
of the "selected" events from the open set of 
specified types of events. Two types of event 
observation functions carry on the event detection: 
the event generator (EG) and the event estimators 
(EE) (Andreu et al. 1996). The latter are dedicated to 
particular events (model based detection). An EG (it 
is more a functionality than a module, so several 
event generators can be used) has to extract event 
occurrences from periodic measures according to 
given event generation rules. Crossing threshold by 
one, or a set of, (sampled) continuous variable is a 
usual rule of detection. An EE (also a functionality) 
has to build event occurrences from model based 
computation (cf. 3.3). 
 
 
 

 

 
 

 

 

 

 

Fig 1: arm controller architecture 
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From a real-time point of view, the event detection is 
at the interface between asynchronous and 
synchronous worlds (Fig. 1). Events correspond to 
sporadic phenomenon, whose occurrences are factual 
rather than periodical. Their detection is carried on 
periodic measures; it is an asynchronous notification 
based on a synchronous system observation. 
 
 
2.3. Control laws description 
 
An open set of control laws (Degoulange et al. 1993) 
has been developed according to the required 
manipulator capabilities, and in terms of actions the 
robot has to be able to perform. 
 
The joint space position control law (CPA). This 
control law, not sensible to singularities (singular 
positions linked to the lining up of some axis of the 
manipulator), is used to stop the manipulator, for 
instance for commutation purposes. Indeed, 
trajectory generation being locally computed (i.e. 
within the control module), the arm is stopped while 
switching in order to avoid latency effects, such as 
unstability. 
 
The joint space position control law referenced in the 
task space (CPARC). Based on the CPA law, the 
difference dwells in the task space defined final 
point. This point is then converted in the joint space. 
It has the advantage of allowing the operator to 
define a motion in the task space, regardless of the 
manipulator model. This law is used to deal with 
singularities or to carry out any motion in a 
unconstrained space (the prediction of the arm 
trajectory in the task space not being immediate). 
 
The hybrid position/force control law (CHP). The 
cartesian space is divided into two complementary 
and orthogonal spaces respectively the position and 
force, whose selection is expressed by a matrix. This 
law requires less computation time than CHE (see 
below). It is used to perform regular motions or 
surface following, but only in absence of constraint 
on environment preservation. Indeed, if the force 
control-loop breaks, there is no command left in the 
direction of force regulated axis. 
 
The external force control law (CHE). This law can 
be used for the same goals as CHP, moreover all the 
axis being regulated by the position control-loop, it 
guarantees a non-destructive behavior, even in case 
of force regulation error. 
 
Impedance control law (CIMP). This particular law 
allows getting a spring-damper like behavior. It is 
used as such for palpation and contact searching 
goals, as well as for cushioned transport. 
 
 

3. HYBRID MODELING OF THE CONTROLLER 
 
Automation of robotic systems raises difficult issues, 
others than mechanical, sensor data processing and 

computer architecture ones. The reason is that the 
behavior results from interacting dynamics both 
continuous and discrete (events). As a consequence, 
when dealing with control, a comprehensive model 
of such hybrid systems has to include both discrete 
events and continuous aspects. Each of these worlds 
has a different mathematical framework for its 
description. Several approaches try to combine these 
two frameworks into a single one able to describe 
this mixed discrete/continuous behavior; an overview 
of several approaches in hybrid systems is given in 
(Antsaklis et al. 1998). Both aspects have not been 
integrated in this work because it is better to combine 
two well-established theories, each one being well 
suited to describe one aspect of the system. So, 
cooperation and interaction have been established 
between the PN model of the discrete aspect of the 
system, such as situations, and the continuous one for 
the control law aspects. The articulation between the 
two "worlds" is based on events. 
 
PN provide a formalism which on one hand has a 
high descriptive power (parallelism, choice, 
interactions between distributed control entities, 
incremental design, etc.) and on the other hand has a 
strong theoretical basis (for analysis purposes for 
instance). Moreover these models can be directly 
executed (i.e. without any code translation) by means 
of an inference engine usually called a "token 
player". PN have already proved their suitability for 
modeling robotic applications (Freeman 1991) and 
have been widely used for analysis and performance 
evaluation (Simon et al. 1994, Medeiros et al. 1996, 
Lima et al. 1998) as well as for design and/or 
execution (Causse et al. 1995, Wang et al. 1991, 
Marco et al. 1996, Healey et al. 1996). In our case, 
the class of PN used is Hybrid PN with Objects. This 
class allows the description of both control flow 
(model's structure) and data flow (objects carried on 
the model) within a same model. 
 
 
3.1. Hybrid Petri nets with objects 
 
The class of PN used is the Hybrid PN with Objects 
(H-PNO), defined by H-PNO=(PNO, Fc, Fe, Fj) with 
PNO being the definition of Petri nets with objects. F 
corresponds to different functions associated to the 
net: Fc continuous (discrete-time) functions 
associated to places, enabling functions Fe and 
switching functions (junction functions) Fj associated 
to transitions (Champagnat et al. 1998). The set of 
places describes the states of the controller, to which 
can be associated a continuous function to be 
computed (active states are given by the PN 
marking). Transitions describe events according to 
which the controller's state evolves. A transition 
enabling function defines the condition for the 
corresponding event to occur (threshold crossing for 
example). The switching function defines the effects 
of the event occurrence in terms of continuous 
variables updating (parameters, state variables, etc.). 
It has to ensure a smooth switching between two 



 

given continuous functions as control laws for 
instance. The continuous variables are carried on by 
attributes of the objects, whose updating is only 
performed at transition firing time points. All the 
modules, as well as their inherent interactions, are 
specified by H-PNO. This homogeneous modeling 
allows analysis of the whole application. 
 
In order to avoid a cumbersome representation of PN 
figures, only the structure of the H-PNO is drawn: 
associated objects, functions, etc. are not shown. 
Also some branches are described by aggregated 
transitions (on the control module model) and models 
are sometimes split into several different ones (on the 
context manager model). 
 
 
3.2. The Control Modules 
 
A generic model of a control module, specified by 
HPN with objects, is depicted on Fig. 2. It is 
organized into several coupled blocks. Block (1) is 
dedicated to request management: reception and 
treatment of the objects <request> whose priorities 
depend on the type of interaction. These interactions 
between a control module and its upper level (the 
context manager for instance) are described as 
asynchronous communication based on the client-

server model. A generic control module owns a set of 
defined services as program, start, stop, query and 
kill possible requests (in a master-slave relation, the 
control module being the slave). The module only 
treats a program request if the latter is available (i.e. 
in an inactive state). No re- programming of a control 
module is allowed if it is still executing a control law. 
Such a request allows to specify parameters values, 
set points, periodicity, time out reaction, etc. 
(information carried on the object token <request>). 
A query request is used to know the control module 
state as well as its parameter values (the status report 
corresponds to the object token <sr>). If this request 
is received while performing a control law, it is 
treated only in the remaining time (i.e. when the 
control cycle has been executed). Start, stop and kill 
requests are purely asynchronous without response 
exchanges; the formers respectively enable and 
disable the clocks (disabling thus the control law 
execution). The latter kill correctly the process 
corresponding to the given real-time task. Whatever 
the sequence, on which constraints can be specified, 
all the requests are immediately taken into account 
(reception), even if their effective treatment can be 
delayed as it is the case for a query request for 
instance (low priority). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: PN based generic model of control modules
 
Blocks (2) and (3) respectively correspond to the 
control law execution (periodicity defined by Hc) and 
the watchdog (periodicity defined by To). Signals To 
and Hc (time out and clock) are issued from 
dynamically programmed timers. Notice that the 
place called "control law" is a place associating the 
control law to be executed. From an implementation 
point of view, it is an aggregated representation of 
the sequence of computation performed by the 
control law. This sequence, described by short 
duration steps, can momentarily or definitively be 
interrupted at any time (between each step). Such 
interruptions may occur when receiving a request. 
Blocks (4) and (5) represent external inputs and 
outputs updating; they do not belong to the control 
module. 
 

3.3. The Observation Modules 
 
The illustrated observation module is the one in 
charge of singularity detection (SI).  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: PN based singularity estimator module 
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model and set the periodic activation clock (Fig. 3). 
The event estimation is automatically stopped as 
soon as the event has been detected. 
 
 
3.4. The Context Manager 
 
The context manager receives the goals to achieve 
from the mission manager. Then it has to send 
requests to the event detection and control modules 
and to program, enable/start or disable/stop them 
according to the current situation. For presentation 
reasons, the context manager PN model is presented 
in two parts which have to be merged together to get 
the overall model (except the interactions with the 
upper and lower levels). The first part of the model is 
dedicated to control law switches due to intrinsic 
singularities (Fig. 4): such commutations imposed on 
the context may be seen as autonomous jumps. The 
second one (Fig. 5) represents all the sequencing of 
control law calls in order to perform the mission 
goal: these tactical commutations correspond to 
controlled jumps. 
 
Each thick line place represents an abstract view of 
its associated control module. If the place is marked 
by the (unique) object token <objective> (mission 
goal, point to reach, sub-goals, etc.), the 
corresponding control module is activated; only one 
of them can possibly be active at the same time 
(structural property). All the gray transitions of the 
singularity management part of the model (transitions 
t30 to t35 on Fig. 4) are uncontrollable as their firing 

correspond to autonomous jumps. All the gray 
transitions of the tactical sequencing of sub-goals 
part of the model (transitions t38 to t43 on Fig. 5) are 
controllable as their firing correspond to controlled 
jumps. These gray transitions are equivalent to 
macro-transitions; their firing implies the execution 
of an underlying sequence (right schema of Fig. 4-5). 
The firing of the first transition induces the 
commutation to the CPA law for stopping the arm. 
When it gets stopped, the second transition may be 
fired in order to activate the new selected control 
module. Activation and desactivation of control 
modules, and event detection configuration (not 
represented on the figures) are performed when such 
transitions are fired. Before to activate the new 
control module, the junction function associated to 
the fired transition, is computed to correctly initialise 
variables of the new control law. For instance 
consider the switch from CPA to CHP. The 
intialisation of the CHP integral term (Ti) is done 
when firing the transition t30 according to the given 
junction function : Ti = Uc/Ki, where Uc is the last 
command vector applied by CPA and Ki the integral 
gain of CHP. Junction functions, often more 
complex, are defined for all the possible control law 
switches, i.e. for all the corresponding transitions. 
 
Some simulation results, corresponding to a 
commutation from CHP to CPARC (necessarily done 
through CPA) in order to deal with a singularity, are 
shown on figure 6. The overall stability is preserved 
in spite of control law switching. 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: PN based singularity management (model to be merged with fig.5) 
 
 

 

 

 

 

 

 

 

Fig 5: PN based tactical sequencing  (model to be merged with fig. 4)
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Fig 6: Simulation results of a commutation from CHP to CPARC 
 
 

4. CONCLUSION 
 
In this paper we have described a new approach to 
structure an autonomous robot controller based on 
context management. Events are the key of an 
architecture composed of synchronous and 
asynchronous layers. A modeling technique for such 
hybrid systems has been proposed: it is based on 
Hybrid Petri Nets with Objects that associate 
different functions to the node of the net. A real-time 
"token player" of H-PNO is under development. 
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