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Abstract: Recently, much research has been conducted in the field of identifica-
tion of the linear models. In general, these methods use a time-domain estimate
or a frequency-domain estimate. In this paper. the time-domain estimate and the
frequency-domain estimate were combined to identify the autoregressive with exoge-
nous noise (ARX) models. The concept of general prediction error (GPE) criterion is
introduced for the time-domain estimate. Optimal frequency estimation is introduced
for the frequency-domain estimate. A new identification method, called the empirical
frequency-domain optimal parameter (EFOP) estimate, is proposed for the ARX
model with noise interference. The algorithm theoretically provides the globally
optimum frequency-domain estimate of the model. Some simulations are included

to illustrate the new identification method.
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1. INTRODUCTION

One purpose of system identification is to con-
struct an efficient identifying method for a cer-
tain dynamic system. Basically, a model must
be constructed from observed data. However, be-
cause of noise interference or unmodeled dynam-
ics, the system may not belong to a model class.
Therefore, the observed data may be corrupted.
A general identification then involves obtaining a
model from a priori chosen model classes using
the corrupted data. Clearly, using the observed
data to identify a system results in identification
errors.

An identification method, efficient or not, is pri-
marily dependent on the choice of criteria. The
identification criteria selection is one of the im-
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portant decisions to be made during system iden-
tification. Therefore, the performance of estima-
tion algorithms when the underlying true system
cannot be exactly captured by the chosen model
structure has been a topic of recent interest in the
field of system identification. The prediction error
(PE) criterion (Ljung 1999, Akcay et al. 1996,
and Weyer 2000) that was derived from the time-
domain system is a well-known criterion in system
identification. The celebrated Least-Squares (LS)
method is the most common choice among the PE
criterion. Due to the sensibility and robustness of
identification, several different norms of £ for the
PE criterion were discussed by Ljung (1999) and
Akcay et al. (1996).

However, since engineering systems are most of-
ten characterized in the frequency-domain, the
properties of a closed-loop system can be accu-
rately and intuitively determined by studying the
frequency response function. In many cases, it is



very attractive to describe the signal character-
istics in the frequency domain. Estimating the
frequency response of a system from observed
input-output data is a common requirement. The
use of PE criterion may also result in large es-
timation errors. In particular, the PE criterion
fails to provide a better estimation of the system
transfer function. For this reason, many recent
studies have investigated system identification in
the frequency-domain (see McKelvey et al. 1996,
Gustafsson et al. 1997, Ninness 1997, Ninness
and Gomez 1998). The design of allpass filters
using phase response criteria was considered by
Lang and Laakso (1994) and Kumaresan and Rao
(1999). However, these approaches are not easily
implemented. A new kind of criterion, proposed
by Lo and Kwon (2000), is also considered in this
paper. A series of identification methods can be
derived using this criterion.

System identification must be carried out for a
specific purpose. Lo and Kwon (2000) have re-
lated the identification of the finite impulse re-
sponse (FIR) model to the general prediction error
(GPE) criterion. The autorregressive exogenous
noise interference model is an important dynamic
model that serves a certain purpose. The ARMA
model involves output feedback signals, but the
system signals experience great interference. Some
previous identification methods, such as the com-
mon LS method or the Extended Least-Squares
(ELS) method, could not give the exact estimation
if the AR model was disturbed by noise. Lately,
there has been a considerable amount of literature
written about identification of the ARMA model
(for example, Kumaresan and Rao 1999, Broersen
2000, Weyer 2000, Lambert-Lacroix 2000, Mak-
ila and Jarvinen 2000, Forssell and Ljung 2000).
Many of these studies are focused on how to ac-
curately identify this kind of dynamic model.

In this paper the identification of the ARX model
is also considered. First, there is a review of
some vital background knowledge that is used
in the following sections. This includes the con-
cepts of the GPE criterion and the empirical
optimal frequency-domain estimate. The identi-
fication method is constructed with the GPE
criterion and the empirical optimal frequency-
domain estimate. The discrete Fourier transform
(DFT) is a useful tool in analyzing the proper-
ties of the transfer function and is also used in
this paper. Then, the paper discusses the iden-
tification of the AR model with several distur-
bances. From the optimal frequency-domain es-
timate, several GPE criteria are deduced from
the different ARX models. The time-domain esti-
mate and the frequency-domain estimate are then
combined to form the empirical frequency-domain
optimal parameter (EFOP) estimate for the ARX
models. This method provides the globally opti-

mal frequency-domain estimate and minimizes the
GPE criterion. It has obvious advantages in anti-
disturbance performance and can precisely iden-
tify an ARX model with fewer sample numbers.
Lastly, several simulation examples are included
to illustrate the method’s reliability.

2. PRELIMINARY REVIEWS

Most identification techniques are divided into
two classes: the frequency-domain method and the
time-domain method. In the latter class, the main
identification methods used in engineering are
derived from the prediction error (PE) criterion
(Ljung 1999, Akcay et al. 1996, and Weyer 2000).
Much of the identification research was also based
on the PE criteria (see for example Ninness 1996;
Weyer 2000; Forssell and Ljung 2000; etc.). The
GPE criterion is proposed in this paper. The
identification technique in this paper is based on
this criterion.

Let {y(t)}{¥ be an output sequence of a discrete
system. y(#|6) is the prediction of the output y(z).
N and 8 are the sample number and the system
parameter. £(t,6) = y(t) — y(¢|8) is the prediction
error of the system at time ¢. The prediction error
vector of the system is defined as

B(N,0) = (e(1,0),€(2,6),--,&(N, 0))T

Definition 1. Suppose that S(N,8) is a pre-
diction error vector of a discrete system. Then
a function f is a GPE criteria of the system if
the function f(B(N,6); N,8) is a positive definite
function of the vector B(N, 8) with respect to the
parameters N and 6.

The primary difference between the GPE criterion
and the PE criterion was explained by Lo and
Kwon (2000). Their definition demonstrates that
the PE criterion is contained in the GPE criterion,
but they are not equal. For example, the function

F(B(N,0); N,8) = BT(N,0)Q(N,6)5(N,6) (1)

is a GPE criterion of a linear predictive system,
which is called a general quadratic criterion, where
the matrix Q(N,6) € RV*V is a positive definite
symmetric matrix.

Suppose that a function f(B(N,6);N,0) is a
GPE criterion of a discrete system. The estima-
tion of the system parameter § is then taken to
be the value that minimizes the GPE criterion

f(B(N,0); N,6):

B = argmin f(B(N,6); N, 6) )
Estimation (2) is called the EFOP estimate of the
parameter 6 if the corresponding GPE criterion is

constructed with the empirical optimal frequency-
domain estimation.



In the GPE criterion, the challenge is to select
which positive definite function f makes the sys-
tem identification more accurate. The GPE cri-
terion in Eq.(1) clearly indicates that problem is
required to solve. In fact, the prediction error vec-
tor is determined by the given system. The matrix
Q(N,9) is the only object that can be changed.
The other matrix Q(N, 6) will result from a differ-
ent estimate. How is a positive definite symmetric
matrix (N, 6) chosen in order to obtain a more
accurate estimate for the given system in general
quadratic criteria? This paper presents a method
to construct such a matrix Q(N,§) as well as an
efficient GPE criteria. This idea is derived from
optimizing the transfer function estimate.

3. EFOP ESTIMATE

Consider the ARX model (Jankunas 2000)
AlQy(t) = u(t — 1)+ o(t) 3)

Here y(t), u(t), and v(t) are the output, the input,
and the disturbance noise. 4(q) is a stable output
filter with form:

AlQ) =1+ a1 + a2 %+ +ang™"

a1,09, **,0, are unknown system parameters.
¢! is the unit delay operator. Note that
0= (alaa%" 'aa‘n)T

(p(t) = (-y(t - 1)1 "’y(t - 2)? s —y(t - n))T
The noise v(t) may represent observation errors,
modeling errors, external disturbances acting on

the system, etc. In general, v(t) is expressed by
Ljung (1999)

v(t) = Ho(q)w(t)

where Hg(g) is a monic inversely stable filter
and w(t) is white noise independent of the input
signal u(t). Let {u(t)}) be a finite deterministic
input sequence and {y(£)}} be an output response
sequence of model (3) based on the input signal
{u(®)}. G(w*) is the transfer function of model
(3). éN(w") is the empirical transfer function
estimate of the transfer function G(w*) (Ljung
1999). Note that

Dn(k,0) = Gn(W®) - G(w*), k=1,2,---,N.

This paper will now discuss the transfer function
estimate during two normal trials of the filter
Hyp(q). Although some hypotheses are imposed
upon the filter Hp(q), we still emphasize that
those hypotheses are only necessary to deduce the
algorithms. In fact, the simulations illustrate that
these identification algorithms are more efficient
with complicated color noise.

Case 1: Suppose that filter Ho(g) = 1. {u(t)}{ is
a finite input sequence of model (3). Let r(t,6) =
AlQu(t),t =1,2,---,N and

r(t,8),
re(t,6) = { r(t + N,6),

P1(t,0) = (re(t—1,8),7.(t-2,0), -

N N
Qi(N,6) = (X r*(6.0) 2 5 D" 91 (.00 (2,6)
t=1 t=1

if 1<t<N
if 1-N<t<0

,re(t—N, 0T

Theorem 1. Suppose that the noise {w(t)}¥ of
model (3) is white noise with variance A. Then

13 (DN(kae)) = ﬁT(N,G)Ql(N,()),B(N,G) (4)

is the optimal frequency-domain estimate (Luo
and Kwon 2000) of model (3). |

Theorem 1 shows that the estimation error of
the transfer function Dpy(k,8) can attain the
empirical optimum using performance index (4)
This form is the same as display (1). Therefore,
function Fi(Dn(k,6)) is a GPE criterion of the
globally optimal frequency-domain estimate of
model (3). From (2) and the above relation the
EFOP estimate of ARX model (3) under the case
Hy(q) = 1 is of the form

8prop = argmeinﬂ(N,O)TQl(N,G)ﬂ(N,G) (5)

Case 2: Suppose that the filter Ho(q) = A(qg).
Then model (3) becomes an output error (OE)
model (Ljung 1999).

Theorem 2. Suppose that the noise {w(t)}}V of
model (3) is white noise with variance A. Then the
optimal frequency-domain estimate Fb(Dn(k,0))
of model (3) is:

Fy(Dn(k,8)) = BT(N,6)Q2(N,8)8(N.6) (6)

where B(N,6) is the prediction error vector of
model (3). Q2(N,0) is defined as:

N 1 N
Qa(N,0) = (Q_ ()5 D va(t,0)u5 (t,6)
t=1 t=1

and
Yo (t,0) = (ue(t—1,0),u.(t-2,6), - -, ue(t—N,6))T

_ [ ult), if 1<t<N
”e(t"’)‘{u(HN), if 1-N<t<0
m}

Theorem 2 proves that the function (6) is the
empirical optimal frequency-domain estimate of
model (3) in the case 2. We can attain the EFOP
estimate of model (3) by minimizing GPE crite-
rion (6). But it may be complicated in the cal-
culation. If the relative noises are smaller than



the output signals, the EFOP estimate can be
simplified. Note that

N N
Qa(M) = (3 u2(t) 2 D st O8] (,0)
¢3(t) = (ye(t - 1)aye(t - 2)a ce ,ye(t - N))T
and
if 1<t<N

_{ v,
ye(t)_{y(ty+N), if 1-N<t<0

The parameter estimation depends on the choice
of matrix Q(N). The different matrix Q(N)
will correspond to the different estimation. A
concrete form of Q(N) by some Toeplitz ma-
trices is given here. For the AR model, the
rectangular-Block Toeplitz form Is also considered
by Buzenac-Settineri and Najim (2000), Lambert-
Lacroix (2000), and Byrnes et al. (2000, 2001), but
they are completely unrelated to this discussion.

Remark 1: Although the form of expression (6),
a GPE criterion for system (3), appears similar
to the Minimizing Variance Estimation (MVE),
there is also an essential difference between them.
In the sense of giving the smallest covariance ma-
trix in MVE, the best choice of the matrix Q(N)
should be the noise covariance matrix. “Notice
that it requires knowledge of the noise covariance
matrix, which might not be a realistic assump-
tion” (Ljung 1999). Therefore, the matrix Q(N)
in the MVE could not be obtained in practice.
Even if some knowledge about the system noise
is known, the form of MVE is still different from
expression (6). For example, if the noise is a white
noise with variance ¢, the matrix @(XN) in MVE
should be ¢~ 1I. Then MVE just becomes the LS
Estimation. However, the matrix Q(N) in this
paper is a Toeplitz matrix, which is generated by
a system output signal. The simulations will also
compare the efficiency of these two methods. From
(6) it is not difficult to conclude the next theorem.

Theorem 3. Suppose that the disturbance {w(t)}{

of model (3) is white noise with variance A and the
relative noises are smaller than the output signals.
The EFOP parameter estimation Ogro2 is given
as
bzrops = (8T (N)P(N)B(N))™
T(N)P(N)Y (N)
N

P(N) = > 4s(t)¢3 ()

where )
Y(N) = (y(1) — w(N), -, 9(N) — (N - 1))T
[m]

Remark 2: Theorem 3 and relationship (5)
demonstrate that the reason why the EFOP es-

timate method has a good anti-disturbance per-
formance is because the output signals or in-
put signals are stressed in the EFOP estimation
methods. In particular, these algorithms have an
advantage for identifying the systems affected by
color noise interference, although these methods
are deduced under the hypothesis that noise w(t)
is a white noise. The simulations illustrate the
fact is valid when noise w(t) is also a color noise.
Moreover, we can demonstrate that Theorem 3
could adapt to case 1 of system (3). In many
cases the algorithm described by Theorem 3 is
still available to identify the ARX model if the
weighting signals y.(¢) in Theorem 3 are replaced
by the signals u,(t).

4. SIMULATIONS

The following simulations are carried out for the
ARX models with the disturbance noise sequence
{v(®)}}. To illustrate the behavior of the EFOP
estimates, several simulation trials are conducted
for comparison with the previous algorithms. For
a real system, the output {y(#)}Y is generated by
the system with a given input sequence {u(t)}¥.
Let

N N
n= (3 v/ D v (k)*
t=1 k=1

be the noise-to-signal ratio, which expresses the
disturbed extent of the model signal. Note that §
is the real model parameter, while 0gro, 815 and
Orrs are the EFOP estimate, the LS estimate,
and the extended least-squares (ELS) estimate,
respectively.

Example 1. The output error model is given by

y(t) + a1yt — 1) +asy(t —2) = u(t - 1)
+w(t) + ayw(t — 1) + a2w(t —2) (7)

The real system parameters are a; = —1.7,a2 =
0.72 and the experimental sample number N is
2000. The input signal {u(2)}{’ is generated by
a sine generator and {w(t)}) is an approximately
white noise with variance A = 5. The output of the
system is then generated by (7) with a noise-to-
signal ratio n = 0.351. The parameter is estimated
by the EFOP2 method, the LS method, and for
the recursive pseudolinear regression of system (7)
the ELS estimate. grop: denotes the average
estimate from the 200th EFOP estimate value to
the 2000th EFOP2 estimate. 615 and 515 denote
the average estimate from the 200th LS estimate
value to the 2000th LS estimate and the average
estimate from the 200th ELS estimate value to the
2000th ELS estimate, respectively. The calculated
values are given by the following forms:



7 _{ —1.6879 £ 0.0125
EFOP2 = 0.7092 £ 0.0123
3« = (05717 £ 0.0170

LS = \ —0.3446 + 0.0196

Go o o (13905 £ 0.2652
ELS = 0.4062 + 0.2732

where the calculational error is defined by the
standard deviation. The calculational results show
that the EFOP method identifies real system (7)
more efficiently than the LS method or the ELS
method. Furthermore, with the sample number
N increasing, the values of the EFOP estimate
are closer to the real parameters. These are also
validated by simulation figure 1.

From simulation figure 1 the EFOP method can
be intuitively compared with the LS method and
ELS method. Although in this example the distur-
bance is an approximately white noise the EFOP
estimate effectively identified the ARX color noise
interference model. The next identification is an
example of case 1 of system (3) with a color noise.

Example 2. The system is
y(t) — 0.8y(t) = u(t — 1) + v(?) (8)

The input signal is generated by a pulse generator.
The experimental sample number N is also N =
2000. The real system parameter is a; = —0.8.
The interfered noise {v(t)}Y¥ is assumed by the
form of an color noise sequence

1-1.3¢g71+05¢2
1+0.8¢71

where {w(t)}¥ is an approximate white noise.
Then the output of system (7) is given with
a noise-to-signal ratio = 0.387. The parame-
ter is estimated by the EFOP1 method, EFOP2
method, and the LS method for this disturbance.
Orropi (j=1,2) denotes the average estimate from
the 200th EFOPi estimate value to the 2000th
EFOPi estimate. 0,5 denotes the average esti-
mate from the 200th LS estimate value to the
2000th LS estimate. The simulation results can
be shown by figure 2.

u(t) = w(?)

Although the estimation fLs result tends to be
steady, with increasing sample number N, the
LS method produces a quite significant error be-
tween & and 915. The estimation @gpop; oscil-
lates more, but near the true parameter . Fur-
thermore, the Ogrope yields a better estimation
of the parameter. This result is also illustrated by
the following calculated values.

_ Ors= —0.5378 £0.0113
fgrop1 = —0.7809 +0.0143
Oeropz = —0.7952 +0.0042

From simulation examples above we can see that
EFOP estimates identify the ARX model well and

do not need many sample numbers. Moreover, for
systems whose sample numbers are difficult to
attain, they have an obvious advantage.

5. CONCLUSIONS

In this paper considers the identification of ARX
models with noise interference. The GPE criterion
and the empirical optimal frequency-domain esti-
mate are introduced and some frequency proper-
ties are analyzed. Through minimizing the error of
the empirical transfer function estimation, several
GPE criteria are constructed for the correspond-
ing ARX models. The empirical frequency-domain
optimal parameter estimates for the ARX models
are obtained by minimizing the GPE criterion.
The advantage of the EFOP estimate is that it
has a good anti-disturbance performance and the
interfered model can be precisely identified with
fewer sample numbers. An easy method to find
the approximate estimation of the EFOP is de-
duced. Although our method is derived from spe-
cial noise, it more effectively identifies the ARMA
model disturbed by color noise. Lastly, several
simulation examples are included to illustrate the
method’s reliability.

REFERENCES

Akcay, H., Hjalmarsson, H., & Ljung, L. (1996).
On the choice of norms in system identification.
IEEE Transactions on Automatic Control, 41,
1367-1372.

Broersen, P. M. T. (2000). Autoregressive model
orders for Durbin’s MA and ARMA estima-
tors. IEEE Transactions on Signal Processing,
48(8), 2454-2457.

Buzenac-Serrineri, V. & Najim, M. (2000). OL-
RIV: A new fast adaptive algorithm for Rect-
angular Block Toeplitz systems. IEEE Transac-
tions on Signal Processing, 48(9), 2519-2534.

DeFatta, D. J., Lucas, J. G., & Hodgkiss, W.
S. (1988). Digital Signal Processing: A System
Design Approach. John Wiley & Sons.

Gustafsson, F., Gunnarsson, S.,& Ljung, L.
(1997). Shaping frequency-dependent time reso-
lution when estimating spectral properties with
parametric methods. IEEE Transactions on
Signal Processing, 45(4), 1025-1035.

Jankunas, A. (2000). Optimal adaptive control
for estimation of parameters of ARX mod-
els. IEEE Transactions on Automatic Control,
45(5), 964-968.

Kumaresan, R. & Rao, A. (1999). On designing
stable allpasss filters using AR modeling. IEEE
Transactions on Signal Processing, 47(1), 229-
231.



800

1 1 1
1000 1200 1400 1600 1800 2000

Simulation of Example 1

-0.2

-0.8

-1

-1.2

-1.4

LS Estimate

EFOP1 Estimate

1 1 1
(o] 200 400 600 800

Fig. 2.

Lambert-Lacroix, S. (2000). On periodic autore-
gressive processes estimation. IEEE Transac-
tions on Signal Processing, 48(6), 1800-1803.

Lang, M. & Laakso, T. 1. (1994). Simple and
robust method for the design of allpass filters
using Least-Squares phase error criterion. IEEE
Transactions on Circuits and Systems-II: Ana-
log and Digital Signal Processing, 41(1), 40-48.

Ljung, L. (1999). System Identification- Theory
for the User. Upper Saddle River, NJ: Prentice
Hall.

McKelvey, T., Akcay, H., & Ljung, L. (1996).
Subspace-based identification of infinite dimen-
sional multivariable systems from frequency-
response data. Automatica, 37, 885-902.

1 1 1 H 1
1000 1200 1400 1600 1800 2000

Simulation of Example 2

Ninness, B. (1996). Integral constraints on the
accuracy of Least-squares estimation. Automat-
ica, 32(3) 391-397.

Ninness, B. & Gomez, J. C. (1998). Frequency
domain analysis of tracking and noise perfor-
mance of adaptive algorithms. IEEE Transac-
tions on Signal Processing, 45, 1314-1332.

Pintelon, R., Schoukens, J., & Vandersteen, G.
(1997). Frequency domain system identification
using arbitrary signals. JEEE Transactions on
Automatic Control, 42, 1717-1720.

Weyer, E. (2000). Finite sample properties of sys-
tem identification of ARX models under mixing
conditions. Automatica, 36, 1291-1299.



