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      Abstract: This paper investigates the absolute exponential stability (AEST) of a class of 
neural networks with a general class of partially Lipschitz continuous and monotone 
increasing activation functions. The main obtained result is that if the interconnection matrix 
T  of the neural system satisfies that T−  is an H -matrix with nonnegative diagonal 
elements, then the neural system is AEST. 

Keywords: Absolute exponential stability, activation functions, partial Lipschitz continuity, 
neural networks. 

 
 

 

 

1. INTRODUCTION 

 
Recently, the analysis of absolute stability (ABST) of 
neural networks, especially to Hopfield neural 
networks and cellular neural networks, has received 
much attention in the literature (Forti, 1994; 
Kaszkurewicz and Bhaya, 1994, 1995; Arik, 1996 
and 1998;.Liang and Wu, 1998; Liang and Wang, 
2000) An absolutely stable neural network has the 
ideal characteristics that , for any neuron activation in 
a proper class of sigmoid functions and other network 
parameters,  the network has a unique and globally 
asymptotically stable (GAS) equilibrium point.  The 
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ABST property of neural networks is very attractive 
in their applications for solving optimization 
problems, such as linear and quadratic programming, 
because it implies that the optimization neural 
networks are devoid of the spurious suboptimal 
responses for any activation functions in the proper 
class and other network parameters. The ABST 
neural networks are thus regarded as the most 
suitable ones for solving optimization problems 
(Liang and Wang, 2000). 
 
The existing ABST results of neural networks in 
(Forti, 1994; Kaszkurewicz and Bhaya, 1994, 1995; 
Arik, 1996 and 1998;.Liang and Wu, 1998) were 
obtained within the classes of bounded and 
differentiable activation functions. However, in 
practical optimization applications, it is not 
uncommon that the activation functions in 
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optimization neural networks are unbounded and/or 
non-differentiable, as demonstrated in previous work 
(Forti and Tesi, 1995; Sudharsanan and Sundareshan, 
1991; Bouzerman and Pattison, 1993; Liang and 
Wang, 2000). Moreover, it is desirable that the 
optimization neural networks are globally 
exponentially stable (GES) at any prescribed 
exponential convergence rate (Sudharsanan and 
Sundareshan, 1991; Bouzerman and Pattison, 1993; 
Liang and. Wang, 2000). Furthermore, for a GES 
neural network we can make a quantitative analysis 
and therefore, know the convergence behaviors of the 
neural network arrives at a solution with a specified 
precision. Thus, the analysis of absolute exponential 
stability (AEST) of neural networks is deemed 
necessary and rewarding. An absolutely exponentially 
stable (AEST) neural network means that the network 
has a unique and GES equilibrium point for any 
activation functions in the proper class and other 
network parameters (Liang and Wang, 2000). 
 
The main purpose of this paper is to provide an AEST 
result, which can be stated as follows: if the 
interconnection matrix T  of the network system 
satisfies that T−  is an H -matrix with nonnegative 
diagonal elements, then the network system is AEST 
with respect to (w.r.t.) a general class of partially 
Lipschitz continuous (p.l.c.) and monotone increasing 
activation functions. The obtained AEST result of the 
neural networks in the paper is first proposed in the 
literature. 
 
 

2. MODEL AND PRELIMINARIES 
 
Consider the neural network model descibed by the 
system of differential equations in the form 

IxTgxDfx ++−= )()(&            (N)  

where ∈= T
nxxxx ),,,( 21 K R n , D  is an 

nn× constant diagonal matrix with diagonal 
elements id >0, ,,,2,1 ni K= )( ijTT =  is an nn×  
constant interconnection matrix, 

∈= T
nn xfxfxfxf ))(,),(),(()( 2211 K R n  and 

),,2,1)(( nixf ii K=  is defined as 
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where .1≥m T
nn xgxgxgxg ))(,),(),(()( 2211 K= : R n →  

R n  is a nonlinear vector-valued activation function 
and ∈= T

nIIII ),,,( 21 K  R n is a constant input 
vector. 
Assume that g  belongs to the class PLI of 

activation functions defined by the property that 
∈g PLI if for :)(,,,2,1 ii xgni K=  R → R is a 

partially Lipschitz continuous and monotone 
increasing function. A function :)(ρh R→ R is said 
to be partially Lipschitz continuous (p.l.c.) in R if for 
any ∈ρ R there exists a positive number ρl such 
that 

   ∈∀−≤− θρθρθ ρ ,)()( lhh R.    (2) 
It can be seen that a function ∈g PLI may be 
unbounded and/or non-differentiable. Liang and 
Wang, (2000) have shown that several classes of 
activation functions used in the literature (Hopfield 
(1985); Chua (1988); Forti and Tesi (1995)) are 
special ones of the PLI class. 
 

Lemma 1 (Liang and Wang, 2000) If g  belongs to 
sigmoid functions defined by the property that for 

ni ,,2,1 K= , 1)( Cxg ii ∈ (R) is a bounded function 
and has positive derivative everywhere in R, i.e. 
∈g s , then ∈g PLI. 

If ∈g PLI, then the vector field defined by the right 
hand of system (N), ,)()( IxTgxDf ++−  satisfies a 
local Lipschitz condition. By the Theorem of Local 
Existence and Uniqueness for the solutions of 
ordinary differential equations (ODE) (see Hale, 
1969), for any ∈0x R n , there exists a unique 
solution of the autonomous system (N) denoted by 

),( 0xtx  for ))(;0[ 0
* xtt∈  satisfying 

,);0( 00 xxx =  where ),0()( 0
* +∞∈xt  or 

+∞=)( 0
* xt  such that ))(,0[ 0

* xt is the maximal 
right existence  interval of the solution );( 0xtx . It 
will be found , in section 3, that the solution );( 0xtx  

is actually bounded for ))(,0[ 0
* xtt∈ .By the 

Continuation Theorem for the solutions of ODE (see 
Hale, 1969), we can conclude that +∞=)( 0

* xt . In 
the following definitions of stability, we will denote 

);( 0xtx for ),0[ +∞∈t as the global solution of 
system (N) uniquely determined by the initial 
condition ∈= 00 );0( xxx R n .Moreover, we will use 

two equivalent norms of vector x  in R n , 

i.e., ( ) 2/1

1
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=
n

i ixx  and .
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Definition 1 An equilibrium point ∈*x R n  of 
system (N) is a constant solution of (N), i.e., it 
satisfies the algebraic equation 

.0)()( ** =++− IxTgxDf  The equilibrium *x  is 
said to be GES if there exist two positive constants 



 

1≥α  and 0>β such that for any ∈0x R n  and 
),0[ +∞∈t  
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Definition 2 (Liang and Wang, 2000) System (N) is 
said to be AEST with respect to the class PLI if it 
possesses a GES equilibrium point for every function 
∈g PLI, every input vector ∈I R n , and any 

positive diagonal matrix D . 
It is obvious that an AEST neural network system (N) 
is ABST because the GES property implies the GAS 
one. 
For the proof of AEST result of neural network 
model (N) in Section 3, we require some knowledge 
in matrix types with their characteristics and some 
concepts from degree theory. For convenience, we 
give those of particular relevance to our need. 
 

Definition 3 Let the nn× matrix A  have 
non-positive off-diagonal elements, then each of the 
following conditions is equivalent to the statement 
" A  is an M -matrix." 

)( 1Μ   All principal minors of A  are non-negative, 
i.e., .0Ρ∈A  

)( 2Μ  KA+  is nonsingular for any positive 
diagonal matrix K . 
 

Definition 4 An nn×  matrix A  is said to belong 
to the class 0Ρ  if A  satisfies one of the following 
equivalent conditions: 

)( 1Ρ  All principal minors of A  are nonnegative. 

)( 2Ρ  For each ∈x R n , if 0≠x , there exists an 
index },,2,1{ ni K∈  such that  

0≠ix  and 0)( ≥ii Axx , where iAx)(  denotes 
the i th component of the vector .Ax  

)( 3Ρ  For each diagonal matrix 
),,,( 21 nKKKdiagK K=  with iK >0, 

,,,2,1 ni K=   
det 0)( ≠+KA . 
 

Definition 5 An nn ×  matrix A )( ija=  is said to 
be an H -matrix if its comparison matrix Μ

)()( ijmA =  defined by for ,,,2,1, nji K=  
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is an M  matrix. 
 

Definition 6 Let the nn ×  matrix )( ijaA = have 
non-positive off-diagonal elements, then each of the 
following conditions is equivalent to the statement 

" A  is a nonsingular M -matrix." 
)'( 1M   All principal minors of A  are positive. 
)'( 2M  A  has all positive diagonal elements and 

there exists a positive diagonal elements and there 
exists a positive diagonal matrix  
Λ ),,,( 21 ndiag λλλ K=  such that A Λ is strictly 
diagonally dominant; that is 
          .,,2,1, niaa

ij
jijiii K=>∑

≠

λλ  

By Definition 3 and definition 6, the matrix A  with 
non-positive off-diagonal elements is an M -matrix 
if and only if its transposition TA  is also. 
The following two lemmas will be used in this paper. 
 

Lemma 2 (Liang and Wang, 2000) Let the matrix A  
have non-positive off-diagonal elements, then A  is 
an M -matrix if and only if KA +  is a nonsingular 
M -matrix for any positive diagonal matrix .K  

 

Lemma 3 (Liang and Wang, 2000) If A  is an 
H -matrix with nonnegative diagonal elements, then 

.0Ρ∈A  
Now, we introduce some concepts from the degree 
theory. The following facts and their details can be 
found in Liang and Wang (2000) and its references 
therein. 
Let Ω  be a nonempty, bounded and open subset of 
R n ,and Ω  and Ω∂  be the closure and boundary 
of Ω , respectively. Let )(ΩC be the space of all 
continuous vector-valued functions or mappings 
defined on Ω  into R n . Let )()( Ω∈Cxf and that 

0)( =xf has no solution in Ω∂ .then the degree of 
)(xf relative to 0 and Ω ,denoted by );0;( Ωfd ,can 

be well defined by an algorithm whose details can be 
seen in Chua and Wang (1977). Roughly speaking, 
the degree of )(xf  relative to 0 and Ω  can be 
regarded a the algebraic number of solutions of 

0)( =xf  in Ω .For example, if Ω∈0 , then the 

identity mapping ∈= xxxid ()( R )n  has the degree 
.1),0;( =Ωidd A particularly useful fact is that if 

0),0;( ≠Ωfd ,then there exists at least one solution 
of 0)( =xf  in .Ω  
We will employ the homotopy invariance property in 
the degree theory. A homotopy );( λzh  over Ω  is 
any continuous vector-valued function from 

]1,0[×Ω  to R n . Let );( λzh  be a homotopy over 
Ω . If 0);( =λzh  has no solution in Ω∂  for any 

]1,0[∈λ , then ),0);;(( Ωλzhd  is a constant 
independent of .λ  In this case, )0;(zh  and )1;(zh  



 

are said to be homotopic to each other over ,Ω  and 
we say that );( λzh  connects )0;(zh  and )1;(zh  
homotopically. 
Similar to Liang and Wang (2000), the above 
presented facts from the degree theory will be used to 
prove the existence of equilibrium of the network 
system (N). 
 
 

3. AEST RESULT AND ITS PROOF 
 
The main AEST result in the paper is the following. 
 

Theorem 1: If T−  is an H -matrix with 
nonnegative diagonal elements, then the neural 
network system (N) is AEST w.r.t. the class PLI. 
Proof. Fix ∈g PLI, ∈I R n  and the positive 
diagonal matrix D . 
Suppose that T−  is an H -matrix with nonnegative 
diagonal elements. Then, its comparison matrix 

)( T−Μ  is an M -matrix which diagonal elements 
are ).,,2,1( niTii K=−  By Lemma 2, for any positive 
diagonal matrix =K diag ),,,( 21 nKKK K  the 
matrix KT +−Μ )(  is a nonsingular M -matrix. 

Thus, its transposition TKT ))(( +−Μ  is also. From 

condition )( 2
⋅M in Definition 6, it follows that there 

exists a positive diagonal matrix Λ

= diag ),,,( 21 nλλλ K  such that 

  .,,2,1, njKTT jj
ji

ijijjj K=<+∑
≠

λλλ   (3) 

Step 1: Let ∈−−= xIxTgxDfxH ()()()( R ),n  then 

∈*x R )n is an equilibrium of the network system the 
form ,)()()( VxTGxDfxH +−= where the 
function  

∈−== )0()())(,),(),(()( 2211 gxgxGxGxGxG T
nnK PLI 

satisfying ,0)0( =G  and the vector 

∈−−== ITgVVVV T
n )0(),,,( 21 K R n . 

Since ∈g PLI, by (1) there exist positive constants 
),,2,1(0 nili K=> such that  

        iiiiiii xlgxgxG ≤−= )0()()(  

for ∈ix R and .,,2,1 ni K= We can select the 
positive diagonal matrix K  as jjj ldK 2/=  

),,2,1(0 nj K=>  for which the inequality (2) holds 
for some positive diagonal matrix Λ

= diag ),,,( 21 nλλλ K . 
Construct the nonempty, bounded and open subset 

∈=Ω xr { R }0{}
1

⊇< rxn  for some 0>r  and 

the homotopy ∈= T
n xhxhxhxh )];(,),;(),;([);( 21 λλλλ K R n  

defined as  
 ),()1()();( xHxfxh λλλ −+=   ]1,0[, ∈Ω∈ λrx  

where ∈=Ω xr { R }.
1

rxn ≤ In the following, we 

will prove that for sufficiently large 0>r , 
0);( ≠λxh  for ∈=Ω∂∈ xx r { R }

1
rxn =  and 

].1,0[∈λ  
Let the signum function ∈ρρ)(sgn( R) be defined as 
1 if ;0>ρ 0 if ;0=ρ  and -1 if 0<ρ . Then, we 
have 
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Thus, if ,/ωθ>r  from the inequality (3), then we 
can get that for rx Ω∂∈  and ],1,0[∈λ  

,0);()sgn(
1

>∑ =
λλ xhx ii

n

i i  which implies that 

.0);( ≠λxh  
By the homotopy invariance property, we have that 

),0);1;((),0);0;(( rr zhdzhd Ω=Ω , i.e., that 
.01),0;(),0;( ≠=Ω=Ω rr iddHd  Thus, 0)( =xH  

has at least one solution in ⊆Ω r R n . 
Now, we show that there is at most one solution 
of 0)( =xH in R n by the contradiction method. 

Assume that ∈= T
nxxxx ),,,( )1()1(

2
)1(

1
)1( K R n  and 

∈= T
nxxxx ),,,( )2()2(

2
)2(

1
)2( K R n  be two different 

solutions of .0)( =xH This means 

0)()()()( )2()2()1()1( =−−=−− IxTgxDfIxTgxDf  
and hence, 



 

( ) ( )[ ] ,0)]()([)( )2()1()1()2( ≠−=−− xfxfDxgxgT   

Let ∈−== )()()~,,~,~(~ )1()2(
21 xgxgxxxx T

nK R n , 
then 0~)( ≠− xT  and hence .0~ ≠x Since 0Ρ∈−T  
from Lemma 3, by condition ( )2P  in definition 3, 
there exists an index },,2,1{ ni K∈  such that 

0)()(~ )1()2( ≠−= iiiii xgxgx  and .0)]()([~)~(~ )2()1( ≥−=− iiiiii xfxfxdxTx  

The last inequality is equivalent to 0][~ )2()1( ≥− iii xxx  

because of 0>id  and 0])][()([ )2()1()2()1( ≥−− iiii xxxfxf . 

Moreover, noting the inequality 0)2()1( ≠− ii xx  from 

0~ ≠ix , we know that .0][~ )2()1( ≠− iii xxx  Therefore, 

we should have ,0][~ )2()1( >− iii xxx  i.e., that 

0])][()([ )2()1()1()2( >−− iiiiii xxxgxg . This is in contradiction 
with the monotone increasing property of ).( ii xg  
At this point, we have shown that the network system 
(N) has a unique equilibrium point which can be 
denoted by ∈= T

nxxxx ),,,( **
2

*
1

* K R n . 

Step 2: For any ∈0x R n , let );( 0xtx  for ))(,0[ 0
* xtt∈  

be the unique solution of the autonomous system (N) 
satisfying the unique solution of the autonomous 
system (N) satisfying the initial condition 

,);0( 00 xxx =  where ),0()( 0
* +∞∈xt  or 

+∞=)( 0
* xt  such that ))(,0[ 0

* xt  is the maximal right 
existence interval of the solution ).;( 0xtx  Let 

∈−== *
021 );())(,),(),(()( xxtxtztztztz T

nK R n  for 

))(,0[ 0
* xtt∈ . Then, )(tz  satisfies the following 

ODE of the form 
∈∀+−= ttzgTtzfDdttdz )),(())((/)( ))(,0[ 0

* xt     ( )~N  

with the initial condition  ,)0( *
0 xxz −=  where the 

vector-valued function ∈= T
nn zfzfzfzf ))(,),(),(()( 2211 K R n  

is defined by )()()( ** xfxzfzf −+=  and 

∈= T
nn zgzgzgzg ))(,),(),(()( 2211 K R n  is defined by 

)()()( ** xgxzgzg −+=  for ∈= T
nzzzz ),,,( 21 K R n  

satisfying 0)0( =f  and 0)0( =g  respectively. 
Similarly, from the assumption of ∈g PLI, by (2) 
there exist positive constants ),,2,1(0 nii K=>µ  
such that 
 iiiiiiiii zxgxzgzg µ≤−+= )()()( **   

for ∈iz R and .,,2,1 ni K=  In what follows, we 
will take the positive diagonal matrix K  as 

0)2/( >= jjj dK µ ),,2,1( nj K=  for which there 
exists a positive diagonal matrix Λ

= diag ),,,( 21 nλλλ K  satisfying the inequality (2). 

Construct the Lyapunov function ∑=
=

n

i ii zzV
1

)( λ  for 

∈z R n . Define the right and upper Dini derivative 
of )(zV along the solution )(tz by 

./))](())((sup[lim))((
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dt
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Computing the Dini derivative of )(zV  along the 

solution )(tz for ∈t ))(,0[ 0
* xt , we have  
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where .0min ,,2,1min >= = jnj dd K  
By the comparison principal, from the above 
differential inequality we have 

),2/exp())0(())(( mintdzVtzV −≤ ))(,0[ 0
* xtt ∈ .  (4) 

Let the two constants 0max ,2,1max >= = jnj λλ K  and   
 ,0min ,,2,1min >= = jnj λλ K  then we get 

1max1min )( zzVz λλ ≤≤  for ∈z R n .Thus, it can 

be inferred from (4) that for ))(,0[ 0
* xtt∈  

).2/exp();( min1

*
0

min

max
1

*
0 tdxxxxtx −−≤−

λ
λ       (5) 

The above inequality implies that the solution 
);( 0xtx is bounded for ))(,0[ 0

* xtt∈ . By the 
Continuation Theorem for the solutions of ODE, we 
can conclude that +∞=)( 0

* xt  and the inequality (5) 
still holds for ).,0[ ∞∈t  In view of the equivalence 
of the norms 

1
x  and x , by Definition 1 and (5), 

*x  is the GES equilibrium of the system (N). 
Integrating the above obtained results, we have 
completed the proof of AEST of the network system 
(N). 
 

Remark 1 The inequality (5) implies that the 
exponential convergence rate of any network 
trajectory has a lower bound of 2/mind . On the 
other hand, putting T  equal to the zero matrix in the 



network model (N), we can see easily that the 
possible lower bound for the exponential 
convergence rate of the network trajectory cannot be 
greater than .mind  When the network model (N) is 
used for solving optimization problem and the larger 
exponential convergence rate of network trajectories 
is desired, we can use the following modified 
network model 

IxTgxDfdtdx ++−= )()(/τ  
where 0>τ is a time constant. It is obvious that the 
exponential convergence rate of any trajectory for the 
above modified network model has a lower bound of 

)2/(min τd . Thus, the exponential convergence rate of 
the network trajectory can be made arbitrarily large 
by tuning downward the time constant .0>τ  
 

Remark 2 Let )(xg  is piecewise linear activation 
functions, then the network system (N) is a 
VLSI-oriented continuous-time cellular neural 
networks proposed by Espejo et al. (1996). So, the 
GES result of the VLSI-oriented continuous-time 
CNNs is obtained simultaneously.  
 

Remark 3 Let 1=m  in (1) and ∈)(xg PLI, then it 
is obviously shown that the AEST result of Liang and 
Wang (2000) is special case of this paper. 
 
 

4. CONCLUSION 
 
In this paper, we have obtained a new AEST result of 
the neural networks (N) with globally Lipschitz 
activation functions with the existing ABST results of 
neural networks with special classes of sigmoid 
activation functions of neural networks and 
demonstrates that the network system has the 
stronger global exponential stability. Thus, the 
obtained AEST result allows neural networks (N), 
which is very suitful for for hardware implementation 
(see Espejo et al., 1996), to have a wider ranger of 
applications. 
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