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Abstract: In this paper the optima nonlinear predictive cascaded control structure is
presented with application to induction motors, which provides global asymptotic tracking
of smooth speed and flux trajectories. The controller is based on a finite horizon
continuous time minimization of nonlinear predicted tracking errors. With full state
measurement assumption, the robustness properties with respect to electrical parameter
variations and load disturbance is presented. Finally computer simulations show the flux-
speed tracking performances and the disturbance rejection capabilities of the proposed
controller in the nominal and mismatched parameters case. Copyright © 2002 IFAC

Keywords: Nonlinear continuous-time predictive control, Cascaded structure, Robust

control, Induction motors.

1. INTRODUCTION

Induction motors are widely used in industria
applications due to their low maintenance, simplicity
and relatively low cost compared to other machines.
However, their dynamical model is multivariable,
coupled, highly non-linear and the states are not al
measurable for feedback control purposes. Therefore,
they are more difficult to control than DC motors.

In recent years, to increase performance of classical
control, e.g. field oriented torque control (Novotny
and Lipo, 1996), many control strategies have been
proposed to achieve better dynamic performance and
induction motors have been gradually replacing the
DC motors. Among these control strategies, typical
approaches include input-output linearization
(Bodson, et al., 1994; Kim, et al., 1990; Kim, et al.,
1992; Chiasson, 1993), singular perturbation methods
(Djemai, et al., 1993) and backstepping control (Tan
and Chang, 1999). R. Marino, et al. (1999) have
proposed a speed/torque and flux tracking adaptive
controller without measurements of the rotor fluxes
or load torque while adapting to the changing rotor
resistance. To overcome parameter variations and

load disturbance, Benyahia, et al. (1995) and
Boucher, et al. (1997) have proposed a cascaded
generalized predictive control (GPC) combined with
input-output torque-flux linearization. This paper
examines the non linear continuous-time generalized
predictive control approach based on a finite horizon
dynamic minimization of predicted tracking errors
with specified end point output constraints, to
achieve torque and rotor flux amplitude tracking
objectives. In the application framework of motion
control (robotics, machine tool), an extension to
speed control is realized with a cascaded structure.
The uncertainties we accounted for are electrical
parameter variations and unknown load torque,
which are major concerns in motion control
applications. It will be shown that some advantages
of this control scheme include good tracking
performance, clear physical meaning of maximum
and minimum control values when saturation occurs,
controller robustness with respect to electrical
parameter variations and load disturbance.

The paper is organized as follows. After the
mathematicall model of the induction motor
developed in section 2, a brief overview of the



optimal nonlinear predictive control theory is
presented in section 3. In section 4 we extend the
previous scheme to speed control by means of a cas-
caded nonlinear predictive control structure. Signifi-
cant simulation results are given in section 5 for the
nominal and mismatched model of the induction
motor with load disturbance. The paper ends up with
the concluding remarks and suggestionsin section 6.

2. MATHEMATICAL MODEL OF THE
INDUCTION MOTOR

An induction motor is built up around three stator
windings and three rotor windings. Using the Park's
transformation, a two phases equivalent machine
representation with two rotor windings and two stator
windingsis obtained. In this paper, the stator fixeda-
b frame is chosen to represent the model of the
machine and under the assumption of equal mutual
inductance and linear magnetic circuit, the dynamics
of the induction motor are given by a fifth-order
model, see (Boucher, et al. 1997; Novotny and Lipo,
1996):

x=f(x)+gu D

With: X:[isa iwfrafm W]T

u=[u9 Usb]T
Where: g, ig : stator currents,

fras frb : rotor fluxes,
W : speed,
Ugy » Ugp : stator voltages.

Vector function f(x) and constant matrix g are
defined asfollows-
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All required parameters above have the following
meanings:
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Where: L, L; are stator and rotor inductances,
Ly isthe mutual inductance,
Rs, R; are stator and rotor resistances,
T, = L,/R; istherotor time constant,
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p isthe pole pair number,

Jistheinertiaof the machine,

fisthe friction coefficient,

T, is the load torque considered as an

unknown disturbance.
Considering the torque and rotor flux modulus as
outputs of the a.c. drive, the following equations can
be derived, with y; asthe torque and y, asthe rotor

flux norm:
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3. NONLINEAR GENERALIZED PREDICTIVE
CONTROL

The nonlinear continuous-time generalized predictive
control is briefly described in this section. We
consider the nonlinear system of the form:
%x_f(x)+g(x)u 3)
Ty =h(x)
Wherex(t)T X1 A"isthestatevector, ut) T Ul A™
represents the control vector. y(t)i A™isthe output.
The functions f(x): A" > A", g(x): A™> A" and h(x):
A" > A™ are sufficiently differentiable.
The desired output trgjectory is specified by a smooth
function y,e(t) for ti [to, ti].
The problem consists in elaborating a control law
u(x,t) that improves tracking accuracy aong the
interval [, t+T], where T>0 is a prediction horizon,
such that y(t+T) tracks y(t+T). That is, the tracking
error is defined by:

et+T)=y(t+T)- yre (t+T)
A simple and effective way of predicting the
influence of u(t) on y(t+T) is to expand it into a r"
order Taylor series expansion, in such a way to
obtain, for each component of the vectors:

Yit+T)=h @) +TL¢h +T—2L2fh +
2 fori=1,.m (4)
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Where Lih; denotes the k" order Lie derivative of h;
with respect to f(x). r; is the relative degree of the
output ¥, deflned to be the nonnegative integer j such
that the | derivative of y; along the trajectory of
equation (3) explicitly depends on u(t) for the first
time.

The expansion of the motor outputs y(t+T) in a r™"
(with ry=1 and r,=2) order Taylor series in compact
formis:

y(E+T)=y(@®)+V, (X, T)+L(T)W(X)u(t) 5)
Where:
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Similarly, Vre(t+T) may be expanded in a same ™"
order Taylor series:

Yref (1+T) =y e (t) +d(t,T) (6)
Where:
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The tracking error at the next instant ¢+T) is then
predicted as function of the input u(t) by:

e(t+T)=y(t+T)- Yy (1+T) =

=e(t)+V, (X,T)- d(t,T)+L (T)W (X)u(t)
In order to find the current control u(t) that improves
tracking error along the interval [0, h], with a
specified end-point constraint at ty =t+h, we
consider a performance index, that penalizes the
tracking error and predicted control signal, of the
form:
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Qand Q; T A?? are positive definite matrices and R;
T A*?is a positive semi-definite matrix. h and h. are
the observation horizon of the tracking error and
control signal. Assuming that the control signal is
constant along the interval of integration with
h.<<h, the truncated Taylor series expansion form

of the predicted futureinput is:
ut+T) =u(t)
The minimization of J with respect tou(t) 1J/u =0
yieldsto an optimal predictive control law:
- 1
u®= W ()TPMW (X)+hR, ) -
W (x)T (G (h)e(t)+H (x,h)- D(t,h))
Where:
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We notice that the previous output-tracking control
law only affects the torque (y;) and the rotor flux (y,).
In the induction machine, the aim is to control speed
and flux, thus an extension to speed control is
achieved, in the next section, looking at a cascaded
nonlinear predictive control structure.

4. CASCADED STRUCTURE OF THE
NONLINEAR CGPC

Cascaded control (Boucher, et al. 1996) is typically
prescribed for linear systems involving time-scale
separation assumption. That is, the inner loop is
designed to have a faster dynamic than the outer
loop. In this paper, the nonlinear continuous-time
generalized predictive control scheme is extended to
speed control by using the cascaded structure (fig.1).
Indeed, the mechanical equation of the motor is given
by:

. 1 f
Wi(t) = 3 y1(t)- TW(t)

or in the Laplace domain:
1
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This equation (9) allows to control the speed by
acting on the torque yy. Thus, the initial system can
be decomposed into two sub-systems in a cascaded
form (fig.1). The inner loop incorporates torque-flux
model and the external loop is the velocity transfer
function deduced from the mechanical equation
given above.

W(s) =

Inner
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Fig.1. Cascaded control configuration

The desired reference models, chosen in continuous
time, are given by:
- For thetorque trajectory (yy):

Yrefl(s) _ WO
Wi (9  s+wg
- For the flux trajectory (y,):

Yref ,(8) _ wi?
wa(s) s+ fWgS+W 2
- For the velocity trajectory (W):
Wier (5) WV2

wa(s) g2+ 2X W\ S +W\,2
The control objectiveisthe tracking of Wto adesired
reference Wg and the tracking of y; and vy, to desired
reference signals VYien and Yiep. The performance
indexes, with end-point constraints, that penalize the
tracking errors, the input control of the inner loop
and the input control of the external loop at the
instant (t+T), are given by:
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and:
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Where: e,(t +T) =W({t+T)- Wi (t+T)
et+T)=y(t+T)-yrg (t+T)
. at+)] _ Yref, (t+T)
with:  y(t+T)= vt +T)| reft+T) = Yreg (t+T)

h is the flux-torque prediction horizon, h, the speed
prediction horizon and h¢ the control horizon.

Q and Q; 1 A?? are positive definite matrices,
Ri1 A®? is a positive semi -definite matrix, e, O
andrg are at least positive real.

Assuming that the torque y; tracks the reference
signal y¢1, the globa prediction model of the
external loop is calculated, including the torque
closed loop, in the following manner:

W(s) =

yi(s) » )W1 (9 (12
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From the minimization of the performance indexes
(J; and J,), we obtain:
- For the external loop:

Wo =f rnom (13)
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- For the inner loop, the control signal given in
Eg.8is:

u=- (W) TPMW)+h R, ) a5
W (x) T (G (h)e(t)+H (x,h)- D(t,h))

Tracking performance:
- For the externa loop: the equation (14) with
re =0, gives using the second order derivative of W
the following speed tracking error dynamics:
hy hZ . .
(G *a =) 8,0 +(de + s )6, (0 +

hV
+(0e + g ?)ev =0

- For the internal loop: we assume that W(x) has
afull rank. Let Q =g Iz, Qi =qi l2, R =0 in the
controller (15), we obtain:
u(t)=- W (x) ™ P(h) * (G (h)e(t) +H (x,h)- D(t,h))
Differentiating the output y; one time and the output
y» twice and by using the above control equation, we
can show that the tracking errors dynamics are:

For the torque:

h h
(+q; E)h & () +(g+q; E)el(t) =0
For the flux:

h h
(q+0q; g)hzéz(t)+2(q+qi e+

+2(q+q %)ez(t) =0

The above dynamics equations are linear and time
invariant. Thus, the proposed tracking controller
design technique leads to feedback linearization and
we can easily verify the asymptotic stability of the
tracking errors dynamics of the overall system.

5. SIMULATION RESULTS

Computer simulations have been performed to check
the behavior of the proposed controller. The plant
under control is a 1.5 kW induction machine used in
(Boucher et al., 1997) with the following parameters:

R=261W, R;=4.287W, L,=0.368H,
Ls=0.404H, L,=0.368H, J=0.0256 kgrﬁ,
p=2.

The parameters values of the three reference models
are chosen asfollows:
Xt =1, w; =15rad/sfor theflux trajectory
X, =1, w, =10 rad/sfor the speed trajectory
w, =45 rad/s for the torque trajectory.

After several trials, the control parameters are chosen
as:

Q=101,, Q=101 Ri=10°1,
h = 0.002

Je=1, Jei = 10, re= 0.001
h.=0.02h h,=h.

To examine the flux and the speed tracking
performances, it was considered that the flux must
reach the nominal value fnom= 0.75 Whb. The speed
must reach the value W = 100 rad/s in the interval of
time 62s; W = 150 rad/s in the interval 24 s; and
W= 70 rad/s for t > 4. To test the disturbance
regjection, a 5 Nm unknown load torque is applied
betweent=0.8sandt=1.2s.



Figure 2 shows that the behavior of the actual rotor
flux is very close to the flux reference. It also appears
that the rotor speed fits the speed reference trajectory.
The applied load torque has no effect on the flux and
its effect on the speed is rapidly compensated (figure
4). Figure 3 depicts the variations of the admissible
stator voltage (Ug , Ug ) and the stator current ig
which is also admissible, within the saturations limits
(Benyahia, et al. 1997).

In the mismatched case, the electrical parameter
variations are shown in figure 5 and the simulation
results are illustrated in figure 6. As seen from the
figure, the flux and speed trajectories are well
tracked. The above results demonstrate that the
proposed controller has strong robustness properties
in the presence of load disturbance and parameter
variations. These results are very interesting in
comparison with other aready known solutions
tested on the same benchmark. It is also possible to
show that the controller is not very sensitive to the
tuning parameters.

6. CONCLUSIONS

In this paper, we have shown that the non-linear
continuous-time generalized predictive controller,
used in cascaded structure, with end-point
constraints, can be successfully applied to the control
of induction machines. Based on simulation results,
we have demonstrated that the proposed control law
achieves speed and flux amplitude tracking
objectives even with disturbance, thus presents
sufficient robustness in case of electrical parameter
variations. These results obtained with the particular
trajectories used in motion control are very attractive
in this field of applications. The non-linear
continuous-time generalized predictive control is
developed under the assumption that the full state
vector is measurable. This assumption will be
avoided in the future with an extension of the non-
linear continuous-time generalized predictive control
with state observer.
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Fig.2. Rotor torque, rotor flux and speed tracking performance
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