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Abstract: In this paper the optimal nonlinear predictive cascaded control structure is 
presented with application to induction motors, which provides global asymptotic tracking 
of smooth speed and flux trajectories. The controller is based on a finite horizon 
continuous time minimization of nonlinear predicted tracking errors. With full state 
measurement assumption, the robustness properties with respect to electrical parameter 
variations and load disturbance is presented. Finally computer simulations show the flux-
speed tracking performances and the disturbance rejection capabilities of the proposed 
controller in the nominal and mismatched parameters case. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
Induction motors are widely used in industrial 
applications due to their low maintenance, simplicity 
and relatively low cost compared to other machines. 
However, their dynamical model is multivariable, 
coupled, highly non-linear and the states are not all 
measurable for feedback control purposes. Therefore, 
they are more difficult to control than DC motors. 
In recent years, to increase performance of classical 
control, e.g. field oriented torque control (Novotny 
and Lipo, 1996), many control strategies have been 
proposed to achieve better dynamic performance and 
induction motors have been gradually replacing the 
DC motors. Among these control strategies, typical 
approaches include input-output linearization 
(Bodson, et al., 1994; Kim, et al., 1990; Kim, et al., 
1992; Chiasson, 1993), singular perturbation methods 
(Djemai, et al., 1993) and backstepping control (Tan 
and Chang, 1999). R. Marino, et al. (1999) have 
proposed a speed/torque and flux tracking adaptive 
controller without measurements of the rotor fluxes 
or load torque while adapting to the changing rotor 
resistance. To overcome parameter variations and 

load disturbance, Benyahia, et al. (1995) and 
Boucher, et al. (1997) have proposed a cascaded 
generalized predictive control (GPC) combined with 
input-output torque-flux linearization. This paper 
examines the non linear continuous-time generalized 
predictive control approach based on a finite horizon 
dynamic minimization of predicted tracking errors 
with specified end point output constraints, to 
achieve torque and rotor flux amplitude tracking 
objectives. In the application framework of motion 
control (robotics, machine tool), an extension to 
speed control is realized with a cascaded structure. 
The uncertainties we accounted for are electrical 
parameter variations and unknown load torque, 
which are major concerns in motion control 
applications. It will be shown that some advantages 
of this control scheme include good tracking 
performance, clear physical meaning of maximum 
and minimum control values when saturation occurs, 
controller robustness with respect to electrical 
parameter variations and load disturbance. 
The paper is organized as follows. After the 
mathematical model of the induction motor 
developed in section 2, a brief overview of the 
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optimal nonlinear predictive control theory is 
presented in section 3. In section 4 we extend the 
previous scheme to speed control by means of a cas-
caded nonlinear predictive control structure. Signifi-
cant simulation results are given in section 5 for the 
nominal and mismatched model of the induction 
motor with load disturbance. The paper ends up with 
the concluding remarks and suggestions in section 6. 
 

2. MATHEMATICAL MODEL OF THE 
INDUCTION MOTOR 

 
An induction motor is built up around three stator 
windings and three rotor windings. Using the Park's 
transformation, a two phases equivalent machine 
representation with two rotor windings and two stator 
windings is obtained. In this paper, the stator fixed α-
β frame is chosen to represent the model of the 
machine and under the assumption of equal mutual 
inductance and linear magnetic circuit, the dynamics 
of the induction motor are given by a fifth-order 
model, see (Boucher, et al. 1997; Novotny and Lipo, 
1996): 

ugxfx += )(&  (1) 

With: [ ]TΩφφ βαβα rrss ii=x  

 [ ]Tβα ss uu=u  

Where: βα ss ii ,  : stator currents, 

 βα φφ rr ,  : rotor fluxes, 

 Ω  : speed, 
 βα ss uu ,  : stator voltages. 

Vector function f(x) and constant matrix g are 
defined as follows: 
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All required parameters above have the following 
meanings: 
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Where: Ls, Lr are stator and rotor inductances, 
 Lm is the mutual inductance, 
 Rs, Rr are stator and rotor resistances, 
 Tr = Lr/Rr is the rotor time constant, 

 p is the pole pair number, 
 J is the inertia of the machine, 
 f is the friction coefficient, 
 TL is the load torque considered as an 

unknown disturbance. 
Considering the torque and rotor flux modulus as 
outputs of the a.c. drive, the following equations can 
be derived, with 1y  as the torque and 2y  as the rotor 
flux norm: 
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3. NONLINEAR GENERALIZED PREDICTIVE 
CONTROL 

 
The nonlinear continuous-time generalized predictive 
control is briefly described in this section. We 
consider the nonlinear system of the form: 
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Where x(t)∈ X ⊂ ℜn is the state vector, u(t) ∈U⊂ ℜm 
represents the control vector. y(t)∈ ℜm is the output.  
The functions f(x): ℜn àℜn, g(x): ℜm àℜn and h(x): 
ℜn àℜm are sufficiently differentiable. 
The desired output trajectory is specified by a smooth 
function yref(t) for t∈[t0, tf]. 
The problem consists in elaborating a control law 
u(x,t) that improves tracking accuracy along the 
interval [t, t+T], where T>0 is a prediction horizon, 
such that y(t+T) tracks yref(t+T). That is, the tracking 
error is defined by: 

)()()( TtTtTt ref +−+=+ yye  

A simple and effective way of predicting the 
influence of u(t) on y(t+T) is to expand it into a ri

th 
order Taylor series expansion, in such a way to 
obtain, for each component of the vectors: 
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Where Lf
khi denotes the kth order Lie derivative of hi 

with respect to f(x). ri is the relative degree of the 
output yi, defined to be the nonnegative integer j such 
that the jth derivative of yi along the trajectory of 
equation (3) explicitly depends on u(t) for the first 
time. 
The expansion of the motor outputs y(t+T) in a rth 
(with r1=1 and r2=2) order Taylor series in compact 
form is: 

)()()(),()()( tTTtTt uxWLxVyy y ++=+  (5) 

Where: 
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Similarly, yref(t+T) may be expanded in a same rth 
order Taylor series: 
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The tracking error at the next instant (t+T) is then 
predicted as function of the input u(t) by: 
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In order to find the current control u(t) that improves 
tracking error along the interval [0, h], with a 
specified end-point constraint at htt f += , we 
consider a performance index, that penalizes the 
tracking error and predicted control signal, of the 
form: 
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Q and Qi ∈ ℜ2x2  are positive definite matrices and Ri 
∈ ℜ2x2  is a positive semi-definite matrix. h and hc are 
the observation horizon of the tracking error and 
control signal. Assuming that the control signal is 
constant along the interval of integration with 

hhc << , the truncated Taylor series expansion form 
of the predicted future input is: 

 tTt )()( uu =+  

The minimization of J  with respect to u(t) 0=∂∂ uJ  
yields to an optimal predictive control law: 
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Where: 
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We notice that the previous output-tracking control 
law only affects the torque (y1) and the rotor flux (y2). 
In the induction machine, the aim is to control speed 
and flux, thus an extension to speed control is 
achieved, in the next section, looking at a cascaded 
nonlinear predictive control structure. 
 

4. CASCADED STRUCTURE OF THE 
NONLINEAR CGPC 

 
Cascaded control (Boucher, et al. 1996) is typically 
prescribed for linear systems involving time-scale 
separation assumption. That is, the inner loop is 
designed to have a faster dynamic than the outer 
loop. In this paper, the nonlinear continuous-time 
generalized predictive control scheme is extended to 
speed control by using the cascaded structure (fig.1). 
Indeed, the mechanical equation of the motor is given 
by: 
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or in the Laplace domain: 
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This equation (9) allows to control the speed by 
acting on the torque y1. Thus, the initial system can 
be decomposed into two sub-systems in a cascaded 
form (fig.1). The inner loop incorporates torque-flux 
model and the external loop is the velocity transfer 
function deduced from the mechanical equation 
given above. 
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Fig.1. Cascaded control configuration 
 
The desired reference models, chosen in continuous 
time, are given by: 

- For the torque trajectory (y1): 
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- For the flux trajectory (y2): 
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- For the velocity trajectory (Ω): 
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The control objective is the tracking of Ω  to a desired 
reference Ωref  and the tracking of y1 and y2 to desired 
reference signals yref1 and yref2. The performance 
indexes, with end-point constraints, that penalize the 
tracking errors, the input control of the inner loop 
and the input control of the external loop at the 
instant (t+T), are given by: 
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and: 
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Where: )()()( TtTtTte refv +−+=+ ΩΩ  
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with:   
)(

)(
)(

2

1

Tty

Tty
Tt

+

+
=+y ; 

)(

)(
)(

2

1

Tty

Tty
Tt

ref

ref
ref +

+
=+y  

h is the flux-torque prediction horizon, hv the speed 
prediction horizon and hc the control horizon. 
Q and Qi ∈ ℜ2x2 are positive definite matrices, 
Ri ∈ ℜ2x2 is a positive semi -definite matrix, qei,  qe 
and rei are at least positive real. 
Assuming that the torque y1 tracks the reference 
signal yref1, the global prediction model of the 
external loop is calculated, including the torque 
closed loop, in the following manner: 
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From the minimization of the performance indexes 
(J1 and J2), we obtain: 

- For the external loop:  

rnomw φ=2  (13) 
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Where:  
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- For the inner loop, the control signal given in 
Eq.8 is:  
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Tracking performance: 
- For the external loop: the equation (14) with 

rei = 0, gives using the second order derivative of Ω  
the following speed tracking error dynamics: 
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- For the internal loop: we assume that W(x) has 
a full rank. Let Q = q I2, Qi = qi I2, Ri = 0 in the 
controller (15), we obtain:  
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Differentiating the output y1 one time and the output 
y2  twice and by using the above control equation, we 
can show that the tracking errors dynamics are: 

• For the torque: 
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• For the flux:  
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The above dynamics equations are linear and time 
invariant. Thus, the proposed tracking controller 
design technique leads to feedback linearization and 
we can easily verify the asymptotic stability of the 
tracking errors dynamics of the overall system. 
 
 

5. SIMULATION RESULTS 
 
Computer simulations have been performed to check 
the behavior of the proposed controller. The plant 
under control is a 1.5 kW induction machine used in 
(Boucher et al., 1997) with the following parameters:  
 Rr = 2.61 Ω , Rs = 4.287 Ω , Lr = 0.368 H, 
 Ls = 0.404 H, Lm = 0.368 H, J = 0.0256 kgm2, 
 p =2. 
The parameters values of the three reference models 
are chosen as follows: 
 1=fξ , 15=fω rad/s for the flux trajectory 

 1=vξ , 10=vω rad/s for the speed trajectory 

 450 =ω rad/s for the torque trajectory. 
After several trials, the control parameters are chosen 
as: 
 Q = 102 I2, Qi = 103 I2, Ri = 10-3 I2, 
 h = 0.002 
 qe = 1,  qei = 10, re = 0.001 
 hc = 0.02 h  hv = h. 
To examine the flux and the speed tracking 
performances, it was considered that the flux must 
reach the nominal value φrnom = 0.75 Wb. The speed 
must reach the value Ω  = 100 rad/s in the interval of 
time 0-2 s; Ω  = 150 rad/s in the interval 2-4 s; and 
Ω  = 70 rad/s for t > 4. To test the disturbance 
rejection, a 5 Nm unknown load torque is applied 
between t = 0.8 s and t = 1.2 s. 



     

Figure 2 shows that the behavior of the actual rotor 
flux is very close to the flux reference. It also appears 
that the rotor speed fits the speed reference trajectory. 
The applied load torque has no effect on the flux and 
its effect on the speed is rapidly compensated (figure 
4). Figure 3 depicts the variations of the admissible 
stator voltage ( βα ss uu , ) and the stator current si  
which is also admissible, within the saturations limits 
(Benyahia, et al. 1997). 
In the mismatched case, the electrical parameter 
variations are shown in figure 5 and the simulation 
results are illustrated in figure 6. As seen from the 
figure, the flux and speed trajectories are well 
tracked. The above results demonstrate that the 
proposed controller has strong robustness properties 
in the presence of load disturbance and parameter 
variations. These results are very interesting in 
comparison with other already known solutions 
tested on the same benchmark. It is also possible to 
show that the controller is not very sensitive to the 
tuning parameters. 
 
 

6. CONCLUSIONS 
 
In this paper, we have shown that the non-linear 
continuous-time generalized predictive controller, 
used in cascaded structure, with end-point 
constraints, can be successfully applied to the control 
of induction machines. Based on simulation results, 
we have demonstrated that the proposed control law 
achieves speed and flux amplitude tracking 
objectives even with disturbance, thus presents 
sufficient robustness in case of electrical parameter 
variations. These results obtained with the particular 
trajectories used in motion control are very attractive 
in this field of applications. The non-linear 
continuous-time generalized predictive control is 
developed under the assumption that the full state 
vector is measurable. This assumption will be 
avoided in the future with an extension of the non-
linear continuous-time generalized predictive control 
with state observer. 
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Fig.2. Rotor torque, rotor flux and speed tracking performance 
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 Fig.3. Stator voltage (usα , usβ) and stator current is 
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Fig.4. Speed error tracking Fig.5. Electrical parameter variations 

0 2 4 6
-10

-5

0

5

10
Torque

0 2 4 6
0

0.2

0.4

0.6

0.8
Rotor flux

0 1 2 3 4 5 6
0

50

100

150

200
Rotor speed

 
 Fig. 6. Rotor torque, rotor flux and speed tracking performance in the mismatched case 


