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Abstract: A new approach to the design of a gain scheduled output feedback controller
without a varying-parameter rate feedback is presented. First, the controller design is
translated into parameterized linear matrix inequalities for the parameter matrices. Then,
the sufficient condition is given for the partition of the varying-parameter set based on the
concept of H, performance covering. The varying-parameter set is thus partitioned into
sufficiently small subsets. After the constant matrices are found for each of the subsets, the
required continuous parameter matrices are obtained by using interpolation. The proposed
controller overcomes the drawback that the gain scheduled controller may not be found by
using the existing gain scheduled linear parameter varying (LPV) synthesis. Moreover, the
varying-parameter rate feedback is eliminated and the conservation of the controller design
is reduced by means of limiting the upper bound of the varying-parameter rate. Experiment

results prove the effectiveness of the proposed controller. Copyright © 2002 IFAC
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1. INTRODUCTION

Gain scheduled control is widely used and generally
proved to be efficient (Nichols, et al., 1993; Rugh,
1991; Shamma and Athans, 1990) in nonlinear time-
varying system engineering design. Its principle is to
design local controllers first and then to obtain a
global controller by using interpolation. However, its
theoretical stability is not guaranteed in the whole
varying-parameter range. Recently, due to the
development of robust control, there has been more
research on gain scheduled control, especially for
linear parameter varying (LPV) systems (Apkarian
and Tuan, 2000; Apkarian and Adams, 1997;
Apkarian and Gahinet, 1995a; Apkarian, et al., 1995b;
Kajiwara, et al., 1999). The existing approaches
combine gain scheduling and H,, performance. A gain
scheduled controller with a linear fractional
transformation (LFT) structure based on the small
gain theory is presented in (Apkarian and Gahinet,
1995a). The drawback of the LFT description is that
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the parameters are allowed to be complex numbers.
When the known parameters are real numbers,
conservation is introduced. For the LPV system with a
polytopic structure, a single Lyapunov function is
searched in the whole varying-parameter set to
guarantee a H, performance for all possible
trajectories of the LPV system (Apkarian, et al.,
1995b; Kajiwara, et al., 1999). This, however, is
difficult to achieve. Moreover, there is no restriction
for the varying-parameter rate in this approach. Since
it is allowed to be infinity, a big conservation is
introduced. A controller synthesis method is proposed
for a special kind of LPV systems with an affine
structure with a consideration of the bound of the
varying-parameter rate (Apkarian and Tuan, 2000;
Apkarian and Adams, 1997). However, varying-
parameter rate feedback is needed in the designed
controllers, which is unpractical. Above all, all the
aforementioned gain scheduled LPV controller
designs have a common drawback, i.e., it is not
guaranteed to find a gain scheduled controller, which
meets the demands.

The framework of the conventional gain scheduled
controller is absorbed in this article. On the basis of



the concept of “H, performance covering”, the
sufficient condition is given for the partition of the
varying-parameter set into sufficiently small subsets.
For each of the subsets, the gain scheduled controllers
are designed by using interpolation preserving H,,
performance. After the calculation of the interpolation
in each of the subsets, the upper bound of the
varying-parameter rate which ensures that the system
possesses the H,, performance in the whole varying-
parameter set is obtained. Thus, although its upper
bound is specified, the varying-parameter rate is
eliminated in the gain scheduled controller and
therefore there is no varying-parameter rate feedback
in this article. Furthermore, since the proposed
approach is based on the confirmation that a linear
time-invariant (LTI) H, -controller exists for each
fixed point in the varying-parameter set, it overcomes
the drawback that the gain scheduled controller, which
meets the demands, may not be found by using the
existing gain scheduled LPV controller synthesis.
This article proves theoretically that the proposed gain
scheduled controller makes the system possess a H.,
performance in the whole varying-parameter set.

2. PROBLEM DESCRIPTION

Consider the following LPV system with p(x)0OT O R’
as its varying parameter:

x(t) = A(P()x(1) + By (P))wi (1) + B,(p(1)u(?)

2(#) = G(PO))x(?) +u(?) (1

(1) = Cy(P)x(2) + wy (1)
where x(r) OR", u(r) OR™, z(t) O R™ and y(¢) O R” represent
the state, the control input, the performance index and
the output vector of the system, respectively.
w, (1) O R? is the disturbance due to system dynamics
uncertainty and external inputs. w,(#)0R" is the
system measurement noise. The parameter matrices:
A(p@®):T - R™ , B(p(®):T - R™, By(p(1):T - R™,
C(p®):T - R™ and C,(p(t)):T - R™ .

Since a nonlinear system in the form of
x(t) = f(x(2),m?),u(t)) can be linearized to be a LPV
system as expressed in (1) by using the Jacobian
linearization after the varying parameter p() is
properly selected, the research on the LPV system is
of a general significance. For the LPV system
expressed in (1), design the following n-order gain
scheduled output feedback controller K(p(?)) :

Oy (1) = A (P()xy (1) + B (p(1) ¥(2)
KO E0) = ¢ oy, ) )
Define x,() =[x(t) x.@)] and w(t)=[w () w (@] . Due
to (1) and (2), the closed-loop system is expressed as:
Oy () = A, (p0))x (1) + B, (p()w(?) 3)
F(0) = Cy(p(0)x, (1)
where
g A(p@)
B (pO)Cx(p(1)

B, (p())Cy (p(1)D

A,(p@) = A(Pp®) O

B(p®) 0
B, =
., (P(1)) H o Beow)

C.(pa) =[Cip) C(p())]

O
O
O

Definition 1 Given y >0, if for any disturbance w(¢),
the closed-loop system performance index z(f)

satisfies Izr(t)z(t)dt<y2J'B;/T(t)w(t)dt, the closed-loop
0 0

system possesses the H,, performance Y.

The problem to be solved in this article is to design the
gain scheduled output feedback controller K( p(r)) so
that the closed-loop system possesses the H,,
performance Y for any o) in the varying-parameter
set . For convenience, the symbol “#’ is omitted in
the following text.

3. GAIN SCHEDULED CONTROLLER
SYNTHESIS

Definition 2 For the closed-loop system (3),
where pOT , if there exists a continuous symmetric

positive-definite matrix function P(p):T - R*"*",
which satisfies

- d o
AL(P)P(P) + P(p) A, (p) + PPy *CH(PIC.(P)

+P(P)B,(P)B;(P)P(P) <0 “4)
then the closed-loop system possesses H,
performance Y.

On the basis of Definition 2, the specific method for
gain scheduled controller synthesis is given in this
section.

Theorem 1 Given positive definite constant matrices
0, and 0 and y >0, if there exist positive definite,

continuous and differentiable matrix functions
X(p)and Y(p), where pOT , satisfies

os 0 y'B(pd
. (Om ° y O(p)g<0 (5)
B 0 -1
O R(p)  X(P)B(Pp) y"Cf(p)g
B (pX(p) -1 0 g<o0 (6)
Hy'cp 0 -1 H
Dx(p) yI D>0 (7)
By Y(p)F
where
S(p) =[4(p) = B,(P)C, (DY (p) + Y(P)[A(p) = B,(p)C\(p)]
=B,(P)B, (p) +Q,
R(p)=X(p)A(p)+ 4" (P)X(P) = C; (P)C5(P) + O,
and if for any >0 we have
X(p)<0, ()
Y(p)>-0, )

, then for any invertible matrix function N(p): T - R™",
there exist the following gain scheduled
controller K(p):



F(p)=-[B] ()Y (p) +C,(p)]
M(p)=[I-y*Y(P)X(P)IN (p)
L(p) ==X (p)C] (p)
4 (p) = =N (P)Y* X(P)LA(P) + L(P)C,(P) + B,(P)F(P)IY (P)
+4"(p) +[C/ (P)C,(P) + C (P)F(P)IY(P) + X (P)B,(P)B (p)
+> X(p)Y(p) + N(P)M(p)M " (p) (10)

By (p) =N (P)X(P)L(P)
Ce(P) =Y’ F(P)Y(P)M " (p)

_ W (p) Bx(p)O
so that for all pOr , the closed-loop system possesses
H,, performancey .

Proof Define M(p)=[I-y*Y(p)X(PIN"(p)  (11)
Due to Schur Complement (Gahinet and Apkarian
1994), (7) is equivalent to X(p)-y~Y(p)>0,
e, Y '(p)-y*X(p)<0 (12)
(12) shows also that [7-y*X(p)Y(p)]Y ' (p) is invertible
and so does M(p).
gx(p) N(p) g
Define F(p)= N (p) Y’ N (YoM (o
P—l(p):%zf(p) } M(p) U
B (p) —-N (pX(p)M(p)F

H(p) = 45(p)P(p) + P(P)A,(p) + P(p) +y~CL(p)C,(P)

+P(p)B,(P)B(P)P(P) (13)
Due to Definition 2, in order that the closed-loop
system (3) possesses H, performance y, we must
have P(p)>0 and H(p)<0 for allpOr.
Since P(p)P™'(p) =1, N(P)MT(p)=1-y*X(p)Y(p) .
Since
X(p)+ NPy’ N" (p)Y(p)M ™ (p)I"' N"(p)
=X(p)+yN(p)M (p)Y ™ (p)
=X(p)+y -y X(EY (P (p) =y?Y T (p)>0  (14)
Also,
—V*NT(0)Y(P)M T (p)=~-y*NT(p)Y(P)I -y’ X(P)Y ()] N(p)

=-y’N ()Y '(p)-y* X ()] N(p)

From (12), we have -y’N" (p)Y(p)M " (p) >0 (15)
Thus, due to Schur Complement, (14) and (15) are
equivalent to P(p)>0.
In order to prove H(p) <0, define

*Y(p) 10 g XpOo
P(p=0 and P,(p)=P(p)P(p)= .
1(P) g/ﬂ(i)) 05 2(0) = P(P)P(P) E) N7(P)E
Let H(p)= P (p)H(P)P(P) (16)
Since B(p) is invertible, H(p)<0 if and only if

H(p)<0.

Substituting (13) into (16), we have

H(p) =P (0)45(P)B,(P) + P (0)4,(P)R(P) + B (D)P(P)F(P)
+y 2B (P)CH(PIC. (PP (P) + P (P)B.(P)BL(P)P,(p) (17)

tH, (p) Hy(p)C

HT5(0) Hu(P)

Substituting (17) into P (p), B (p), 4,(p),B,(p) and
C,(p) and combining (5) and (6), we have

Define H(p) =

Y H,(p) <=0, ~Y(p) (18)
Ho,(p) <=0, + X(p) (19)
H,y(p) =y’ X(P)A(P) + L(P)C,(p) + By(P)F(P)IY (p) + A7 (p)
+N(p) A (P)MT (p) +[C] (P)C,(P) + C] (P)F(p)]
+X(p)B/(P)B] (p) +Y*X(p)Y(p) + N(P)M " (p)
When 4, (p) takes (10), H,(p)=0. Combining (18)
and (19), we have
Hpy<gYie+ren o 4
8 0 -0, +X(pg
When (8) and (9) hold, H(p)<0, ie., H(p)<O.
Therefore, for all pOr, the closed-loop system
possesses H,, performance y.

4. ELIMINATION OF THE VARYING-
PARAMETER RATE FEEDBACK IN THE
CONTROLLER

Corollary 1 In Theorem 1, if N(p) satisfies

ON(p) _ —y? X (p)
op; 9p;

i

YOI ~y*X(P)Y(P) " N(p) (i=1-.1)

20
then the 4,(p) in the gain scheduled controller I(( (pg
becomes
4 (p)==N"(P)Y’ X (P)A(p) + L(P)C,(P) + B,(P)F (P)IY (P)

+4"(p)+[C (P)C,(p) + CT (PIF(PY(P)
+X(p)B,(P)B] (P)}M " (P) (21)
and the controller K(p) can guarantee that the closed-
loop system possesses H, performance y for all
pQr .

Proof In the proof of Theorem 1, assume 4, (p)
takes (21). Then H,(p)=y’X(p)¥(p)+N(p)M' (p).
From (11), M7 (p) =11 -y*X(p)Y(P)]" N(p) -
Substituting the above into (20),

M = —VZMY(;))M’T(p)
op; op,;

Further,

ON(p) . 0X(P) ;... . 9X(P)
9, oo, TP o0,
i.e., N(p)M'(p)=-y*X(p)Y(p). Thus, H,(p)=0. Then,
— 2 7 O
A<’ [Q, +Y(p)] 0 0

g 0 -0, +X(p)g
We have H(p)<0, i.e., H(p)<0 from (8) and (9) in
Theorem 1. Therefore, the closed-loop system
possesses H,, performance y forall pOr .

(i=1-1)

l+...+M' =2

Remark For scalar varying parameters, (20) is a
first-order linear differentiation equation, whose
solution is easy to be obtained. Given an invertible
initial condition ~,, suppose an invertible matrix
T(p,p,) is the transition matrix of the differentiation
equation. Then for any p in the varying-parameter set,
the solution of the differential equation can be
expressed as N(p) =T(p, py)N, -

LI (PIM ™ (p)



5. INTERPOLATION PRESERVING #,,
PERFORMANCE

Finding matrix functions X(p)and ¥(p)is the key in
Theorem 1. In references (Apkarian and Tuan, 2000;
Apkarian and Adams, 1997), the drawback of this
approach is that it only applies to a special kind of
LPV systems with an affine structure and it does not
guarantee to find X(p)and Y(p), which meet the

demands. The proposed approach in this article
absorbs the framework of the conventional gain
scheduling.

Definition 3 Suppose that for the fixed
p, 0T (i=0,---,m) there exist constant matrices X, and

v, which satisfy Theorem 1. Let U, be an open
neighborhood containing p, and for each fixed pOU,,

X, and v, satisfy Theorem 1. If FDUU,. and

i

i=0
U"ﬂU"” are non-empty sets, then the matrix sets
{X.,Y.,i=0,---,m}
performance covering.

satisfy the condition of A,

Under the condition of #H, performance covering,
along with the changes of p in different
neighborhoods U, , the transitions of X, and ¥, can
make the system obtain H, performance. However,
the transitions create jump transfers of the controller.
In our approach, continuous matrix functions
X(p)and Y(p)in the whole p O I' are obtained by
using interpolation under the condition of #,
performance covering, as is proposed in this article.
The interpolation technique is presented below for
scalar varying parameters as an example. It is easy to
generalize it to vector varying parameters.

Theorem 2 For positive constants &, and &,, let
0,=6,1 and Q,=35,1. Suppose there exist constant

matrices  (X,,%,),-,(X,,.Y,)

m

corresponding  to
p, <--<p, 0Or, which satisfy the condition of A,

performance covering, ie., for the open
neighborhoods U, containing p,, X, and v, satisfy
Theorem 1. Then there  exist regions

[r,-fl,r,ﬂ]DUiflﬂU;ﬂ[PH’P,-]a i=L-,m and

continuous matrix functions X(p)and Y(p):

oy POLP157i4]
Xp=Hlx B o0 (22)

B, pOlr.p]

e POIP,1s141]
Y(p>=§-::—:fx-l+rfl_f;ix P0G (23)

B PO ]

< i_ri—l)ék’(ri 1)5 D 24
demn S e o9

, the closed-loop system possesses H,, performance y
for all pOr .

Proof From Definition 3, when pQO[p,,r)0U,,
X, and v,_, satisfy (5)~(7) and when pO(_,p,10U,,
v, satisfy (5)~(7). Thus, for the continuous

X, and 7,
matrix functions X(p) and Y(p) expressed in (22) and
(23), when pO[p._.7r ], X(p) and Y(p) satisfy
(5)~(7). Also, when p0O[r,p,]1, X(p) and Y(p) satisfy
(5)~(7). When p0O(,,r), both (x,,,¥_) and (x,,Y,)

satisfy (5)~(7) since this region belongs to U,_, as well

as U.. Then T TPy 4 PTh oy and

i _ i-1 _ i
Tist Ti Vit Ti

Im Py + P7Tiy  also satisfy (5)~(7). As a

T =1 T =1
summary, when pO[p,_,p,], X(p) and Y(p) satisfy
(5)~(7). Furthermore, the continuous X(p) and Y(p)
are regarded as differentiable, since sufficiently close
smooth approximation of (22) and (23) can always be
found (See APPENDIX Theorem 3) such that for
p0[p,,p,1 (5)~(7) are still satisfied. Due to Theorem

37 When pD[ i’]’pl] >

XXl g Al
|me5%:::%mmems%tz%m

From (24), MM <J, and MM <3, ,le,
I = ral I -ra
||X(p)|| <o, and ||Y(p)||s6y. Thus (8) and (9) in
Theorem 1 are also satisfied and therefore the closed-
loop system possesses H, performance y for all

pQr .

6. EXPERIMENTS

Experiments are done for a self-developed planar
two-joint direct-drive manipulator. Its dynamics
equation is as follows (Yu and Chen, 1999)
0 a bcos(e -6, [@D D—b92s1n(9 G)D D‘ID
Epcos(ez —91) % 8 Db@ s1n(9 9 D %
(25)
b =1.4730kg 0n* and

where a=5.679kg On* ,

¢ =1.7985kg Gn” .

Linearize the robotic dynamics equation (25) around

the equilibrium manifold
x.=l, 6, 6, 6.f=6, 6. o ofand r,=00 of
by using the Jacobian approach:

X = Ax+ Bu (26)

where x=§l 6, 6 ézg, u=F 7,), 6,=6,-6,,

ézzez_gze: él:él_éle:éle7 92:32 _éze:ézea



m o0 1 oO
O
001
LS00, 50, T, ST, 7T, =1, A=% 0 0 Ogand

0 O

B 0 0 0§
| 0 0 |
O O
0 0 _ (0 _ 0
5=0 c coslf,, —6,.)
T Che - b cos’(@,, —6,,) ac—b*cos*(6,, -6, )0
—bcos(GZC -0, a %

Hic - b’ cos’ (926 - 916) ac —b’ cos’ (926 - Hle)g

It is seen from (26) that matrix B is the function of
cos(,, —6,,) , where 6,, -0,, is the angle between joint
1 and joint 2, which decides the dynamic
characteristics of (26). Practically, the measured
values of 6, and 6, can be regarded as the equilibrium
points to linearize system (25). Therefore, a varying
parameter p=cos(d,-6,) is defined, where
8,-6,0[-m0] and pO[-11]. Assume that the output
vector y(t) is the joint positions of the manipulator and
w,(t) is the position measurement noise. Since there
are modeling errors such as the high-frequency
unmodelled part and dynamic uncertainty and external
disturbance, the disturbance term w,(r) is the
equivalence of all the above factors. The performance
index z(f) represents the disturbance-rejection
performance for disturbances w,(r) and w,(¢). Then,
(26) can be expressed in a same form as (1),

le

o o0
0 0o
here d(pt)=4,  B(pen=5 L Bi(p®)=B
w > 1 I:i OD: 2 >
0 a
® 13
C,(p(») is the performance weighting matrix. In this
article, we choose Cl(p(t)):El 01 OE. C,(p() 1is
Bo1 oo 1
the output measurement matrix
and C, (p(t -3 0 00
z(p())—%) 1 0 OE'
The interpolation preserving #H, performance

proposed in Section 5 supplies an efficient approach to
find the matrix functions Xx(p) and Y(p). Let
5,=0.015, 6,=085 and y=1 in Theorem 2. Under
the condition of H,_ performance covering, by using
MATLAB LMI Control Toolbox (Gahinet, et al.,
1995), calculate x, and v, for pO[-1,-04], X, and Y,
for pO[-0.6,0], X, and ¥, for p0O[-0.2,04], X, and ¥,
for p0[0.2,08] and X, and v, for p0O[0.6,1]. Then
they can be interpolated according to Theorem 2.

In accordance with Sections 3 and 4, the gain
scheduled controller K(p) without varying-parameter
rate feedback is then obtained. n(p) can be found by
Corollary 1 and Remark (selecting w,=1,).
Calculation gives |x, - x,_,| <0.0061 and |, -7_,|<0.3865,
i=1234. Due to (24) in Theorem 2, in order to
guarantee that the robotic system possesses H.,

performance y in pO[-L1], the upper bound of the

varying-parameter rate is calculated to be

|| 02%0, =0.4398rad/s . Since p=[-sin(8, -6)16, -6,), the
0.3865

calculated upper bound of the varying-parameter rate

can meet the velocity demand in the practical robotic

motion.

In experiment, the end of the manipulator tracks a
circle with a diameter of 0.50m with a velocity of
0.50m ™. The coordinate of the circuit origin is
(0.40m,0.30m) . A comparison is made between the
proposed gain scheduled controller and the
conventional gain scheduled PID control. As shown in
Fig. 1, it is seen that under the functioning of the
conventional PID controller, the maximum errors for
joints 1 and 2 are 0.1°, respectively, with evident small
vibrations, while under the functioning of the
proposed gain scheduled controller, the maximum
errors for joints 1 and 2 are 004" and 0.03°,
respectively, without any small vibration.

=

ilerrors(deg)
[am]

S

01

12 errory (deg)

Fig. 1 Experiment results. The conventional gain
scheduled PID control: ; The gain scheduled
control based on the interpolation preserving #.,

performance:------ .
APPENDIX

Theorem 3 If wp):R - R™, pOdp,p,] 18
continuous and has m +1 corner points at r,,---,r, , i.€.,

EWi—l oJulyo N
wp=0 Ly + Py pOGr) =l

Dr;‘+l - I’; r}'+l - rz

b, POl )]

(A1)

which can be rewritten as

0P + 0, pO[Py,7y)
W(p)=p+0, POl;7), i=Lm (A2)

%/mﬂp"'Qmﬂ PO, P,]
and satisfies ¥, +Q_ =V, +Q,, i=1--,m+1 where

V4,00)s+» (V- O,4) are easy to be obtained, then for
any ¢ >0, there exist a continuous and differentiable
function W(p):R — R™ and & >0 such that

wp)-i o) <e  pOGL -2 +2) (A3)
2

o>

W(p)=W(p) PO, -

o>

o
T+ ) (A4)



< max
PEri-|

d ~
“E w(p)

%W(p)H: i=L-,m+l (AS)

Proof Select

O pri-1 1
Aty - g) + 6J’ * a-oW +ovldo

. B 0

W(p)=0 5 5 A6
0 PO ==l + ) (A6)
0 i
EW(P) p U@ EPLE +7)

It can be verified that W(p) is continuous and
differentiable in pO[p,,p,].

o o

+ =

2

When pO(;, T

)

pri-1 1
<o) - w0 -2 +6J’ * a-oWi, + oo
0
(A7)

< amaxir 1)

Let us prove first |7 (p)-Ww (., -%)

When p0(;, -1,

s, -2 e dr-a.|
<fallo=ral+5 2l <elrial

When p O[5, +3) )

“W(p) W -%)H = HV,P +Q =V +%VH 0 “

=HV,-p+Qi ) +§V“
o o
<22l <omantl

Therefore, when pO(r —%, ey +%) ,

o=t -2 s masi vl
Also, since u+—D(0,1) s
o 2
of * =0 vonfio < amasi L

Due to (A7), [(p) =1 (p)| < 28 max [y, | 1]} -

Let o< W Then ||W(p)—vff(p)||<s,

PO, -%,ri_l +2), which is exactly (A3).

When pO(, —%,r,._l +%), (A4) does exist due to

(A6).
When pO@, —é,ri_1 +%),
_pW(m -y, + B2 Dy due o
(A6).

d »
Then, [ £ o) smaxir L = o “—mm“

J
PL(r;- -1 i 1+2)

Therefore, when p0O[p,,p,1,

max
PP
]

“—mm

ipW( p)“ which is exactly (AS).
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