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Abstract: In this contribution the design of reduced order H∞ filters of order n-κ is
investigated for nth order discrete time systems with m measurements of which κ are
undisturbed. Assuming a reduced order observer structure for the H∞ filter, the filter
gains achieving H∞ optimal a priori estimates )k(ẑ  and a posteriori estimates

)k(ẑ +  are derived using the Bounded Real Lemma. A simple example demonstrates

the proposed design procedure. Copyright  2002 IFAC
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1. INTRODUCTION

The application of H∞ filters, which estimate some
linear combination of the system states in the H∞
norm minimization sense, is appropriate if there is
little knowledge of the statistics of the driving and of
the measurement noise signals. When compared to
minimum variance estimators (Kalman filters) they
are less sensitive to uncertainty in the system
parameters (Shaked and Theodor, 1992). Apart from
their relevance for optimal estimation problems H∞

filters are also of importance in the solution of the H∞

control problem, where for the calculation of the H∞

output feedback controller an H∞ estimator has to be
found for an H∞ state feedback control law in the
presence of a worst case disturbance (Zhou and
Doyle, 1996).

The H∞ filtering problem was first considered by
Grimble (1988) and by Shaked (1990) using a
frequency domain approach. A solution of the H∞
filtering problem in the framework of the Riccati
equation approach is given in (Zhou and Doyle,
1996). The corresponding theory has also been

developed in the discrete time case (see e.g. (Basar,
1991; Yaesh and Shaked, 1991)).

This paper considers the time domain design of
reduced order H∞ filters for discrete time systems,
where κ of the m measurements y of the nth order
plant are not affected by disturbances. The resulting
filter is of order n-κ, since it suffices to build an (n-
κ)th order observer to reconstruct to whole system
state. Assuming a reduced order observer structure
for the filter, the filter gain which achieves a
prescribed H∞ norm bound for the estimation error is
obtained from the Bounded Real Lemma given in (de
Souza and Xie, 1992). The H∞ estimation problem
can be solved under various patterns of information.
In this contribution a priori and a posteriori H∞

filtering are considered. The a priori H∞ filter uses
the measurements in a one step delay, whereas the a
posteriori H∞ filter uses the current measurements in
order to generate the desired estimate. When using
such a posteriori H∞ filters the H∞ norm bound may
be lower than the one that is obtained by a priori H∞
filters.
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After introducing the reduced order observer
schemes employed in the next section, Section 3
gives a short formulation of the underlying H∞
estimation problems. On the basis of the Bounded
Real Lemma (de Souza and Xie, 1992) the a priori
H∞ filter is derived in Section 4. Using the results of
Section 3 the a posteriori H∞ filter is presented in
Section 5. A simple demonstrating example follows
in Section 6 and Section 7 contains some concluding
remarks.

2. PRELIMINARIES

Consider a time invariant, discrete time, linear
system of nth order with mz unmeasurable outputs z,
m measurements y, and q ≥ m disturbances w
represented by
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where Cy is supposed to have full row rank. The
output y is subdivided such that y1 contains the m-κ
disturbed measurements and y2 the κ perfect ones
with 0 ≤ κ ≤ m. It is assumed that the pair (Cy, A) is
detectable.

Further consider a reduced order state observer of
order n-κ for the system (1) (Luenberger, 1971),
namely
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In an undisturbed steady state )k(Tx)k( =  holds

when y21 C]HH[FTTA =− . Using the undis-

turbed measurements y2(k) together with the observer
state )k(  the state estimate results as
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such that an a priori estimate for the unmeasurable
output z(k) is given by .)k(x̂C)k(ẑ z=

As a consequence of (3), the relations
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and

n22 ITC =+ (5)

hold. With L1 such that TL1 = H1 an alternative
representation (see (Gelb, 1974)] of the observer
equation (2) is
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If L1 = Aλ1 this equation can be written as
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and if one is interested in also using the current
(disturbed) measurements y1(k) to reconstruct z(k),

the a posteriori estimate )k(x̂C)k(ẑ z
++ =  with

( ))k(x̂C)k(y)k(x̂)k(x̂ 111 −+=+ , can be employed

(Anderson and Moore, 1979; Hippe and Wurmthaler,
1990). This estimate gives a reduced estimation error
covariance for the Kalman filter in a stochastic
setting and it can also give a reduced infimal value γ
for the H∞ filter (see below).

3. PROBLEM FORMULATION

Given m measurements y find an H∞ filter for the
system (1) that generates an estimate )k(ẑ  for the

unmeasurable mz linear combinations z(k) of the
state x(k) in the H∞ norm minimization sense. With
l2[0,∞) denoting the set of real square summable
functions on the interval [0,∞) define the (worst case)
performance measure
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ẑz
supJ

2

(7)

when using the a priori estimate )k(ẑ , and in the

case of an a posteriori estimate )k(ẑ +  use
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In (7) and (8) wT  and +
wT  denote the filter transfer

function matrices from the disturbance w to the

estimation errors ẑz −=  and ++ −= ẑz , respec-
tively. Now consider the following (sub-optimal)
singular H∞ filtering problems

1) A priori filtering: For a given limit γ > 0 find a
stable filter, if it exists, yielding the a priori
estimate )k(ẑ  such that J ≤ .

2) A posteriori filtering: For a given limit γ > 0 find
a stable filter, if it exists, yielding the a

posteriori estimate )k(ẑ+  such that J ≤+ .



4. THE REDUCED ORDER A PRIORI H∞ FILTER

First the case of the a priori estimate )k(ẑ  is con-

sidered. When using the estimate (3) to get
)k(x̂C)k(ẑ z= , the estimation error transfer function

matrix Tεw is given by
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this is equivalent to
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Now consider the transfer function matrix

DB)AzI(C)z(F 1 +−= − (11)

of a linear discrete time system with state space reali-

zation )D,C,B,A( .

A bound on the H∞ norm of F as defined by (11) is
provided by the following Discrete-time Bounded
Real Lemma, which is a dual result of the lemma
given in (de Souza and Xie, 1992).

Lemma 1: The following statements are equivalent:

(a) A  is a stable matrix and
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(b) )B,A(  has no uncontrollable modes on the

unit circle, and there exists a solution

0PP T ≥=  to the algebraic Riccati
equation (ARE)

)DBCPA(BBAPAP TTTT +−+=
(12)

)BDAPC()CPCDDI( TT1TT2 +++− −

such that 0CPCDDI TT2 <++−   and  P   being

a stabilizing solution, that is )DBCPA(A TT +−

C)CPCDDI( 1TT2 −++−  has all its eigenvalues

inside the closed unit disc.

In the following Lemma 1 will be applied to the error
transfer function matrix �T  to obtain the gain

matrices characterizing the reduced order a priori H∞
filter.

Theorem 1: Consider the system (1) with κ perfect
measurements y2. Then the singular H∞  filtering
problem giving an a priori estimate for the
unmeasurable output z is solved by the reduced order
filter of order n -κ (if it exists)
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where the filter gain matrices result via
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and 0PP T ≥=  is a stabilizing solution of the ARE

−+= TT GGAPAP (18)
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f

T1T
ff

T +++− −

such that 0CPCR T
f <+ , and ((A – L1C1)ΘT, G -

L1D1) has no uncontrollable modes on the unit circle.

After solving 0T 2 =  with T having full row rank

the matrix Θ is obtained from
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Proof: For the proof of Theorem 1 one uses Lemma
1. Introducing the abbreviation
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in (12) and adding the vanishing term

++−++− T
z

TTT
z

TT2
z L)DBCPA(L)CPCDDI(L

    )BDAPC(LL)CPCDDI(L TT
z

T
z

TT2
z +−++−+

to the right hand side of the ARE (12) gives
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Now substituting (compare (10) and (11) and observe

22CIT −=  (see (5)))
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in (21) the resulting expression can be ordered such
that the fictitious feedback matrix
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can be introduced, giving
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This can be reassembled as
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with L, C, Rf and Sf as defined in (15) and (17). This
shows that when choosing L according to (15), the
ARE (12) is satisfied if P  results from the ARE (18).
Furthermore the solution is a stabilizing solution in
the sense of part b) of Lemma 1, since

=++−+− − C)CPCDDI)(DBCPA(A 1TT2TT

=−= CLA z
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(see (20), (15) and (16)).

The stability of the filter is assured by Lemma 1,
which states that T)CLA(A 11−=  is stable if

condition (b) is satisfied. An application of the
similarity transformation
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(see (19)) and observing the relations (4) shows that

κ eigenvalues of A  are located at z = 0 while the
remaining are the stable optimal filter eigenvalues. ð

5. THE REDUCED ORDER A POSTERIORI H∞
 FILTER

Also taking the disturbed measurements )k(y1  to

reconstruct the state x(k) at time instant k, the a

posteriori estimate )k(ẑ +  gives an H∞ norm bound

which may be lower than the one that results from
the a priori estimate )k(ẑ  (i.e. J+ < J). The equations

for the reduced order H∞ filter are in this case
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with )k()k(y)k(x̂ 22 +=  and the a posteriori

estimate (Anderson and Moore, 1979) given by
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The error transfer function matrix now has the form
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which can be rewritten as
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Using Lemma 1 the gain matrices for the a posteriori
H∞ filter can be obtained from the following results.

Theorem 2: Consider the system (1) with κ perfect
measurements y2. Then the singular H∞  filtering
problem with a posteriori estimate is solved by the
reduced order filter of order n -κ (if it exists)
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with the abbreviations (17) and 0PP T ≥=  is a
stabilizing solution of the ARE

−+= TT GGAPAP (34)
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f

T1T
ff

T +++− −

such that 0CPCR T
f <+ , and (A(I – λ1C1)ΘT, G –

Aλ1D1) has no uncontrollable modes on the unit
circle. After solving 0T 2 =  with T having full row

rank the matrix Θ is obtained from (19).

Proof: As in the proof of Theorem 1, one uses
Lemma 1, introduces the abbreviation (20) and
obtains the equation (21). Here the matrices

;DAGB;)CI)(CI(AA 112211 −=−−=

11z2211z DCD;)CI)(CI(CC −=−−=

derived from the representation (27) of +
�T  have to

be substituted (see also (11)). The resulting expres-
sion can be ordered such that the (fictitious) feedback
matrices

1zz1 )CLA(L −= (35)

and

211zz2 )CLCLA(L −−= (36)

can be separated, giving the same equation (23) as in
the case of the a priori estimate. The fact that one
gets a stabilizing solution in the sense of part b) of
Lemma 1, follows exactly as in Theorem 1. Likewise
the stability of the optimal filter can be shown as in
the proof of Theorem 1. ð

6. A SIMPLE EXAMPLE

Given a third order system with one disturbed and
one (perfect) measurement (i.e. m = 2, κ = 1) having
the state space representation

);k(w021
012)k(x01

25.01)1k(x 





−−
−+



 −=+

with         0)0(x =

[ ]
[ ] [ ]
[ ] )k(x10)k(y

)k(w100)k(x01)k(y

)k(x11)k(z

2

1

=

+=

=

Since the measurement y2 is not disturbed, the
reduced order H∞ filter is of order n–κ = 1.

Considering the a priori estimate first, the infimal

value of γ is γopt = 6/35  ≅ 2.41523 and the
solution of the ARE (18) for γ = γopt (i.e. J = γopt)
result as
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With ]61.01[T −=  the condition 0T 2 =  holds,

yielding 
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1 . Consequently the reduced order

a priori H∞ filter is described by
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A better performance index J+ < J for the H∞ filter
can be obtained when using the a posteriori estimate.

Here the infimal value for γ is 95346.0
11

10
opt ≅=

yielding a solution for P  whose entries tend to

infinity. Taking e.g. 0351.1
14

15 ≅=  gives the

solution 
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510P  to the ARE (34), yielding a

performance index J+ = 0.989 and the filter
parameters are (see (31), (32), and (33))
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giving 
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filter using the a posteriori estimate is described by
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7. CONCLUSIONS

Based on the Bounded Real Lemma a solution has
been derived for the discrete time H∞ estimation
problem for nth order plants in the presence of κ
perfect measurements. The resulting H∞ filter is of
order n-κ and has a structure identical to that of the
reduced order Kalman filter (see e.g. Hippe and
Wurmthaler, (1990)). Both a priori and a posteriori
estimates were considered. A simple example
demonstrated the design procedure.
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