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Abstract: In this contribution the design of reduced order H,, filters of order n-K is
investigated for nth order discrete time systems with m measurements of which k are
undisturbed. Assuming a reduced order observer structure for the H,, filter, the filter
gains achieving H,, optimal a priori estimates z(k) and a posteriori estimates

Z"* (k) are derived using the Bounded Real Lemma. A simple example demonstrates
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1. INTRODUCTION

The application of H,, filters, which estimate some
linear combination of the system states in the H,
norm minimization sense, is appropriate if there is
little knowledge of the statistics of the driving and of
the measurement noise signals. When compared to
minimum variance estimators (Kalman filters) they
are less senditive to uncertainty in the system
parameters (Shaked and Theodor, 1992). Apart from
their relevance for optimal estimation problems H,,
filters are also of importance in the solution of the H,,
control problem, where for the calculation of the H,,
output feedback controller an H., estimator has to be
found for an H, state feedback control law in the
presence of a worst case disturbance (Zhou and
Doyle, 1996).

The H,, filtering problem was first considered by
Grimble (1988) and by Shaked (1990) using a
frequency domain approach. A solution of the H,,
filtering problem in the framework of the Riccati
equation approach is given in (Zhou and Doyle,
1996). The corresponding theory has also been

developed in the discrete time case (see e.g. (Basar,
1991; Y aesh and Shaked, 1991)).

This paper considers the time domain design of
reduced order H,, filters for discrete time systems,
where K of the m measurements y of the nth order
plant are not affected by disturbances. The resulting
filter is of order n-k, since it suffices to build an (n-
K)th order observer to reconstruct to whole system
state. Assuming a reduced order observer structure
for the filter, the filter gain which achieves a
prescribed H,, norm bound for the estimation error is
obtained from the Bounded Real Lemma given in (de
Souza and Xie, 1992). The H,, estimation problem
can be solved under various patterns of information.
In this contribution a priori and a posteriori H.,
filtering are considered. The a priori H., filter uses
the measurements in a one step delay, whereas the a
posteriori H,, filter uses the current measurements in
order to generate the desired estimate. When using
such a posteriori H,, filters the H,, norm bound may
be lower than the one that is obtained by a priori H.,
filters.



After introducing the reduced order observer
schemes employed in the next section, Section 3
gives a short formulation of the underlying H.
estimation problems. On the basis of the Bounded
Real Lemma (de Souza and Xie, 1992) the a priori
H., filter is derived in Section 4. Using the results of
Section 3 the a posteriori H,, filter is presented in
Section 5. A simple demonstrating example follows
in Section 6 and Section 7 contains some concluding
remarks.

2. PRELIMINARIES

Consider a time invariant, discrete time, linear
system of nth order with m, unmeasurable outputs z,
m measurements y, and q = m disturbances w
represented by

x(k +1) = Ax(K) +Gw(K) |
2(k) = C,x(K)
1
i Y T
=C,x(k) + Dw(K)

x(0)=0

where C, is supposed to have full row rank. The
output vy is subdivided such that y; contains the m-k
disturbed measurements and y, the k perfect ones
with 0 < K < m. It is assumed that the pair (Cy, A) is
detectable.

Further consider a reduced order state observer of

order n-k for the system (1) (Luenberger, 1971),
namely

k+D =R +[H, IO @

In an undisturbed steady state &(k) =Tx(k) holds
when TA-FT=[H; H,]C,. Using the undis-
turbed measurements y,(k) together with the observer
state &(k) the state estimate results as

oy = [0 T, (K)O_ v,(K0
%0=578 Bio 5% OlEd 3)

such that an a priori estimate for the unmeasurable
output z(k) isgiven by (k) = C,x(k).

As a consequence of (3), the relations

T, _©,%, C,e0_0, 00
o e G

and

¥,C,+0T =1, (5)

hold. With L, such that TL; = H; an dternative
representation (see (Gelb, 1974)] of the observer
equation (2) is

E(k+D =T(A~L,C)0(0)+ ©
#TIL (A -LO)RIHOE

H.(0H

If L, = AA, this equation can be written as
E(k+D) =TA(l -1,C,)O&(K) +

#TA (- 1,C) I8

and if one is interested in also using the current
(disturbed) measurements y,(k) to reconstruct z(k),

the a posteriori estimate 2" (k) =C,X" (k) with
% (k) = X(K) + 2, (y, (k) = C,%(k)), can be employed
(Anderson and Moore, 1979; Hippe and Wurmthaler,
1990). This estimate gives a reduced estimation error
covariance for the Kalman filter in a stochastic
setting and it can also give a reduced infimal valuey
for the H,, filter (see below).

3. PROBLEM FORMULATION

Given m measurements y find an H,, filter for the
system (1) that generates an estimate z(k) for the
unmeasurable m, linear combinations z(k) of the
state x(K) in the H,, norm minimization sense. With
[,[0,00) denoting the set of real square summable

functions on the interval [0,e0) define the (worst case)
performance measure

e ap b
e o,

o )

ew

when using the a priori estimate z(k), and in the

case of an a posteriori estimate Z* (k) use

"z -7"

.
2:TSW

J'= sup ———%
e,

i ®)
In (7) and (8) T, and T, denote the filter transfer
function matrices from the disturbance w to the
estimation errors e =z—-2 and £" =z-2", respec-
tively. Now consider the following (sub-optimal)
singular H,, filtering problems

1) Apriori filtering: For a given limit y > 0 find a
stable filter, if it exists, yielding the a priori
estimate z(k) suchthat J<vy.

2) Aposteriori filtering: For agiven limity > 0 find
a dable filter, if it exists, yielding the a
posteriori estimate z* (k) suchthat J* <vy.



4. THE REDUCED ORDER A PRIORI H,, FILTER

First the case of the a priori estimate z(k) is con-

sidered. When using the estimate (3) to get
Z(k) = C,x(k) , the estimation error transfer function

matrix T, is given by
T (2=C,(@-0T(A-L,C,)"O0T(G-L,D,) (9

or since (zI -®T(A -L,C,))"0OT=
=0T (zZ1-(A-L,C,)0T)™
thisis equivalent to

T, (2 =C,0T(zl -(A-L,C,)®T) (G-L,D,) (10)
Now consider the transfer function matrix
F(z)=C(zZI-A)*B+D (12)

of alinear discrete time system with state space reali-
zation (A,B,C,D).

A bound on the H,, horm of F as defined by (11) is
provided by the following Discrete-time Bounded
Real Lemma, which is a dual result of the lemma
given in (de Souzaand Xie, 1992).

Lemma 1: The following statements are equivalent:

(a) A isa stable matrix and
||E(z| -A) B+ 5"00 <y;

(b) (A,B) has no uncontrollable modes on the
unit circle, and there exists a solution

P=P">0 to the algebraic Riccati
equation (ARE)
P=APAT +BBT -(APC' +BD")

¢ -
(-y31+DD" +CPC")*(CPAT +DB")

such that —y21+DD" +CPCT <0 and P being
a stabilizing solution, that is A—(APC" +BD")
(-y21+DDT +CPC")™C has all its eigenvalues
inside the closed unit disc.

In the following Lemma 1 will be applied to the error
transfer function matrix T,, to obtain the gain

matrices characterizing the reduced order a priori H.,
filter.

Theorem 1: Consider the system (1) with « perfect
measurements y,. Then the singular H, filtering
problem giving an a priori estimate for the
unmeasurable output z is solved by the reduced order
filter of order n -« (if it exists)

Ek+D=T(A-L,C,)OE(Kk) +

+TIL. (A-LORIFOE (9)

2(k) = C, ¥y, (k) + C,0¢(k) (14)

where the filter gain matricesresult via

L:[Lz’ Ll’ L2]=

=(APC" +S,) (R, +CPC™)™ (15)
and

¥,=(A-L,C,-L.C)™L, (16)

with the abbreviations
D D"Yzl m O OE
0 D.,D; Of (17)
H 0o 0 og
s =l epf o

and P=P" =0 isa stahilizing solution of the ARE
P=APAT +GG" - (18)

- (APCT +S)(R, +CPC") (CPA™ +5)

such that R, +CPC' <0, and ((A - L,C,)OT, G -
L.D,) has no uncontrollable modes on the unit circle.

After solving TW, =0 with T having full row rank
the matrix © is obtained from

_c,d
[v, o]= or g - (19)

Proof: For the proof of Theorem 1 one uses Lemma
1. Introducing the abbreviation

L, =(APC" +BD")(-y*I+DD" +CPC")™" (20)

in (12) and adding the vanishing term

L,(-y?1+DD" +CPC")LT -(APC" +BD")L! +
+L,(—y21+DD" +CPC")L] -L,(CPAT +DB")

to the right hand side of the ARE (12) gives

P=APAT +BB" -(APC" +BD")L! - (21)
-L,(CPAT +DB")+L,(-y*1+DD" +CPC")L"

Now substituting (compare (10) and (11) and observe
OT =1 -¥,C, (see (5)))



A=(A-L,C)(1-%,C,); B=G-L,D,;
C=C,(I-¥,C,); D=0

in (21) the resulting expression can be ordered such
that the fictitious feedback matrix

L,=(A-L,C,-L,C,))¥, (22)
can be introduced, giving

P=APAT +GG" -y2L,LT +L,D,DJL] +
+[L,C, +L,C, +L,C,]FL,C, +L,C, +L,C,]" -
-[L,C,+L,C, +L,C,JPAT -L,D,G" -

-AP[L,C, +L,C, +L,C,]" -GDJL!

This can be reassembled as

P=APAT +GG" -(APC" +S)(R, +CPC")(CPA" +S) +

+{L - (APC" +S)(R, +CPC")}(R, +CPC") (23)
{L" = (R, +CPC")(CPA" +5)}
with L, C, R and & as defined in (15) and (17). This

shows that when choosing L according to (15), the

ARE (12) issatisfied if P results from the ARE (18).
Furthermore the solution is a stabilizing solution in
the sense of part b) of Lemma 1, since

A-(APC" +BD")(-y2 +DD" +CPC")*C =
=A-L,C=
=(A-L,C,-L,C)(-¥C,)=A-LC

(see (20), (15) and (16)).

The stability of the_filter is assured by Lemma 1,
which states that A =(A-L,C,)®T is stable if

condition (b) is satisfied. An application of the
similarity transformation

it o

_[C,(A-L,C)OTY,
HT(A - L1C1)®T\P2

C,(A-L,C)eTen_
T(A-LC)OTOH

= 0, C,(A-L,C)60
o T(A-LC)ef

(see (19)) and observing the relations (4) shows that

k eigenvalues of A are located at z = O while the
remaining are the stable optimal filter eigenvalues.

5. THE REDUCED ORDER A POSTERIORI H.,
FILTER

Also taking the disturbed measurements vy, (k) to
reconstruct the state x(k) at time instant k, the a
posteriori estimate z* (k) gives an H,, norm bound
which may be lower than the one that results from
the a priori estimate z(k) (i.e. J° < J). The equations
for the reduced order H., filter are in this case

E(k+1) =TA(I-2,C,)B&(K) + (24)
(- 7‘1C1)\P2] [yl(k) o

H.(kE

with X(k) =¥,y, (k) + ®¢(k) and the a posteriori
estimate (Anderson and Moore, 1979) given by

+TA[A,,

2" (k) = C,x(K) + C A, (y, (k) - C;x(K)) (25)
The error transfer function matrix now has the form

T, (@) =C,(1-1,C)(@I-6TA(I-1,C,))™  (26)
®T(G - A\,D,) -C,D,

which can be rewritten as
T, (2 =C,(1-1,C,)0T(zl -A(l -1,C,)BT) (27
(G -ALD,) -CD,

Using Lemma 1 the gain matrices for the a posteriori
H., filter can be obtained from the following results.

Theorem 2: Consider the system (1) with « perfect
measurements y,. Then the singular H,, filtering
problem with a posteriori estimate is solved by the
reduced order filter of order n -« (if it exists)

E(k+D =TA(I-21,C))BE(K) + (28)
(- 7‘1C1)Lp2] [yl(k) o

.08

X(K) =W,y (K) + OE(K) (29)

+TA[A, ,

and

2" (k) = C,x(k) + C A, (y, (k) = C,x(k)) (30)

where the filter gain matricesresult via

L, . L,J=(APC"+§) (R, +CPC")™(31)
h=(A-L,C)7L, (32)

and
¥, =(A-L,C,-L,C)"L, (33



with the abbreviations (17) and P=P' 20 is a
stabilizing solution of the ARE

P=APAT +GG' - (34)
-(APCT +S)(R, +CPC")*(CPA" +5)

such that R, +CPC" <0, and (A(I - A\,C,)OT, G -
AMD;) has no uncontrollable modes on the unit
circle. After solving T¥, =0 with T having full row
rank the matrix @ is obtained from (19).

Proof: As in the proof of Theorem 1, one uses
Lemma 1, introduces the abbreviation (20) and
obtains the equation (21). Here the matrices

A=A(-1C)(1-¥,C,); B=G-A\D,;

C=C,(1-1,C)(1-¥,C,); D=-C,,D,
derived from the representation (27) of T, have to

be substituted (see also (11)). The resulting expres-
sion can be ordered such that the (fictitious) feedback
matrices

L, =(A-L,C)\ (35)
and

L2 = (A - LzCz - Llcl)qu (36)

can be separated, giving the same equation (23) as in
the case of the a priori estimate. The fact that one
gets a stabilizing solution in the sense of part b) of
Lemma 1, follows exactly as in Theorem 1. Likewise
the stability of the optimal filter can be shown as in
the proof of Theorem 1.

6. A SIMPLE EXAMPLE

Given a third order system with one disturbed and
one (perfect) measurement (i.e. m = 2, K = 1) having
the state space representation

0 .

x(k +1) = g 025%(@ &1 o

with x(0) =0

z(k) =[1 1x(k)
y.(k)=[L x()+[o 0 Lw(k)
y,(K)=[0 1x(k)

Since the measurement y, is not disturbed, the
reduced order H,, filter is of order n—k = 1.

Considering the a priori estimate first, the infimal

value of y is Yo = +/35/6 [ 2.41523 and the

solution of the ARE (18) for v = Yo (i.6. J = Yop)
result as

s_[0O 10
P=g g

giving with (15) and (16)

(01714285 1 -0.050
L=[L,L,L,]= d
[ =0 01714285 1 02 B

¥, =(A-L,C, - Hl 5

With T=[-1 0.16] the condition T¥, =0 holds,

410
==
a priori H,, filter is described by

yielding © = Consequently the reduced order

gk +1)=[-083 025]5’1835
S\ — [0.16 -10¥,(K)C
0= 4577 oHEw B

A better performance index J* < J for the H,, filter
can be obtained when using the a posteriori estimate.

Here the infimal value for yis v, = ‘/% [00.95346
yidlding a solution for P whose entries tend to
infinity. Taking e.g. Yz\/g (01.0351 gives the
solution P = %) 1505 to the ARE (34), yielding a

performance index J° = 0989 and the filter
parameters are (see (31), (32), and (33))

_ _G-46 5 4750
L=l L LZ]'B46 5 5H

and from this one obtains

Xy - [0.8823530 _ 4 p, _ [0.50

"B 0 B CB1E
with T=[1 —0.5] the relation TW, =0 holds,
giving ® = Consequently the reduced order H,,

@@
filter using the a posteriori estimate is described by
&(k +2) = 0.0588245 (k) +

(k)o

_ 0y,
+[0.4411765 -0.220588] R0

2* (k) =L 1]@?(k)+@882353§y1(k) i 01x<k)]§
with

o - 0.5 10y, (k)O
XM =51 ofdew) B



7. CONCLUSIONS

Based on the Bounded Real Lemma a solution has
been derived for the discrete time H,. estimation
problem for nth order plants in the presence of K
perfect measurements. The resulting H., filter is of
order n-k and has a structure identical to that of the
reduced order Kalman filter (see e.g. Hippe and
Wurmthaler, (1990)). Both a priori and a posteriori
estimates were considered. A simple example
demonstrated the design procedure.
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