
 

1. INTRODUCTION

Although real life systems are mostly nonlinear and
distributed, they are often approximated by a linear
lumped model (Ljung, 1999; Pintelon and Schoukens,
2001a). One of the reasons for this is the success of
linear lumped modelling in practical applications (e.g.
control, forecasting, physical interpretation,
measurement …) combined with the difficulty of
nonlinear (distributed) modelling. Hence, if the
observation time is sufficiently long, modelling errors
are often the limiting factor in system identification
problems. Therefore, it is important to study their
impact on the estimated plant model parameters.

In Ljung (1999) and Pintelon and Schoukens (2001a)
the asymptotic (amount of data going to infinity)
properties of the estimated plant model parameters 
have been studied in the presence of modelling errors,

and general closed form expressions for  are
available. Since these expressions are not tractable in
the presence of model errors, numerical methods for
calculating  have been derived in Hjalmarsson
and Ljung (1992) and Tjärnström and Ljung (1999).
These numerical techniques, however, give no
qualitative insight in the influence of model errors and
disturbing noise on .

The contribution of this paper is to give a qualitative
study of the influence of model errors and noise level
on (i) the asymptotic value  (estimate for an
infinite amount of data) of  (see Section 3), and (ii)
the asymptotic (amount of data going to infinity)
covariance matrix  of  (see Section 4).
Starting from the asymptotic properties of  shown in
Ljung (1999) and Pintelon and Schoukens (2001a),
and without any random behaviour assumption about
the model errors, some surprising qualitative
conclusions are drawn concerning the dependency of

 and  on the noise level. Although the
analysis is carried out on two particular estimators
(the prediction error method and the sample
maximum likelihood method, see Section 2), the
same reasoning is applicable to a general class of
identification methods. The theoretical results are
illustrated by simulation examples in Section 5.
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Due to space limitations the proofs of the theorems
are not included in this paper. The reader is referred to
Pintelon and Schoukens (2001b) for the complete
version.

2. THE ESTIMATORS AND THE SYSTYEM

The theory is elaborated for the prediction error
method (see Ljung, 1999) and the sample maximum
likelihood method (see Pintelon and Schoukens,
2001a). Both methods identify the plant model
parameters  from input-output observations  of a
system (see Fig. 1). For the open loop experiment (see
Fig. 1, solid line) the plant may be nonlinear, so that
the plant model errors are due to unmodelled
dynamics and/or nonlinear distortions. For the closed
loop experiment (see Fig. 1, solid and dashed lines)
we explicitly assume that the plant is linear so that in
this case the plant model errors are due to unmodelled
dynamics only.

The prediction error (PE) approach starts from a
general output error stochastic framework where the
input  in Fig. 1 is observed without errors
( ):

, (1)

with  the number of time domain samples;
 in open loop; and  in closed

loop ( ).  is an arbitrary, piecewice
constant excitation;  is the noiseless output
signal;  is the output error modelled as

, with  the backward shift
operator,  a monic rational form in , and

 a zero mean white noise source
( ). The prediction error
estimate  minimizes

(2)

w.r.t. .  contains the input/output observations

(3)

 is the parametric noise model (monic
rational form in ), and  the discrete-time
plant model (rational form in ). Both models may
have common parameters (see Ljung, 1999). Note
that the output error  in (1) is correlated with the

input  for a feedback experiment.

The sample maximum likelihood (SML) method
starts from an errors-in-variables stochastic
framework formulated in the frequency domain where

 in Fig. 1 is a periodic signal:

, (4)

with  the number of frequencies; and

(5)

(any deviation from the periodic behaviour is
considered as noise). ,  in (4) are the DFT
spectra of the 
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 of the input-output
signals ,  

(6)

with  and ; and , 
are independent (over the frequency ) zero mean,
jointly correlated Gaussian disturbances. Assuming
that  independent experiments are available (in
practice  consecutive periods of the steady state
response to the periodic excitation), the sample
maximum likelihood estimate  minimizes

(7)

θ Z

u0 t( )
mu 0=

y t( ) y0 t( ) ny t( )+=

u t( ) u0 t( )=
t 0 1 � N 1–, , ,=

N
ny np my+= ny np=

my 0= u0 t( )
y0 t( )

ny t( )
ny t( ) H0 q( )e t( )= q

H0 z 1–( ) z 1–

e t( )
e t1( )e t2( )}E { σ2δ t1 t2–( )=

θ̂PE

V PE θ Z,( )
1
2
--- ε2 t θ,( )

t 0=

N 1–

∑=

1
2
--- H 1– q θ,( ) y t( ) G q θ,( )u t( )–( ) 2

t 0=

N 1–

∑=

θ Z

Z y 0( ) u 0( ) y 1( ) u 1( ) � y N 1–( ) u N 1–( )
T=

H z 1– θ,( )
z 1– G z 1– θ,( )

z 1–

ny t( )

u0 t( )

r t( )

Y k( ) Y 0 k( ) NY k( )+=

U k( ) U0 k( ) NU k( )+=
k 1 2 � F, , ,=

F

open loop: 
NY NP MY+=

NU MU=



closed loop: 
NY NP 1 G0C0+( )Ú MY+=

NU NPC0 1 G0C0+( )Ú– MU+=



U0 k( ) Y 0 k( )

u0 t( ) y0 t( )

X k( ) N 1 2/– x t( )exp j2πtk NÚ–( )
t 0=
N 1–∑=

x u y,= X U Y,= NU k( ) NY k( )
k

M
M

θ̂SML

u0 t( ) y0 t( )Plant
G0

mu t( )

u t( )

my t( )

y t( )

np t( )

r t( )

+

-

Controller 
C0

Fig. 1. Identification of a plant in open loop (solid
line) or in closed loop (solid and dashed lines).

 is the reference signal; ,  the
input-output signals; ,  the input-
output measurement errors; and  the
process noise.
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w.r.t.  (overbar denotes the complex conjugate). 
contains the input/output DFT spectra at the excited
frequencies

(8)

 is the plant model (rational form in ); 
the generalised frequency variable:  for
discrete-time systems, and  for continuous-
time systems; and ,  and  are the
sample covariances (= non-parametric noise model)

(9)

and where ,  are the input-output
DFT spectra of the th independent experiment
( th signal period). Note that the input-output errors

,  in (4) are ALWAYS independent of
, even for a feedback experiment.

3. ASYMPTOTIC VALUE IDENTIFIED PLANT 
MODEL

The prediction error (PE) and sample maximum
likelihood (SML) estimators minimize a quadratic
like cost function

(10)

where the residual  is a measure of the
difference between the observations  and the model,
and  is a measure for the amount of data
(  for PE, and

 with  for SML).
The noisy observations  are related to the true

values  as  with  a zero mean
disturbance with covariance matrix 

(11)

with , and  defined in Section 2,
and  the input measurement error (see Fig. 1).
The limit  of the expected value of the cost
function (10)

(12)

plays a central role in the analysis of the asymptotic
( ) properties of the minimizer  of (10).
Indeed, under some suitable assumptions it can be
shown that  converges for  with probability
1 to the minimizer  of (12) 

(13)

with  a compact set where the cost function and its
limit value are “well behaved” (continuous and
existing higher order derivatives). For more details
see, for example, Ljung (1999) for the prediction
error method, and Pintelon and Schoukens (2001a)
for the sample maximum likelihood method. Contrary
to what has been assumed in (13),  may have
more than one global minimum in case of model
errors. An example of this can be found in Kabaila
(1983). To handle these cases we restrict the compact
set  in (13) such that  has a unique global
minimum.

To analyse the dependency of  on the noise level,
we replace  by  and hence  by

 in (12), with  a real number. If this
transforms the -dependent part  of  to

, where  is independent of , then 
is independent of the noise level , and it makes
sense to define  as the noiseless solution (= the
estimate  one would get if  and ).
Note, however, that the noiseless solution  defined
in this way is only insensitive w.r.t. noise changes
where the standard deviation of ALL disturbing noise
sources is multiplied with the same factor . Hence,
it may still depend on the noise colouring and the
noise covariance matrix , for example, the
ratio of the output variance  to the input
variance . If  is not transformed to

 then, in general (but this should be
verified for each case),  will depend on the noise
level. The results for  and  are given in
the following theorem.
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Theorem 1 (influence noise level  on ): In the
presence of plant model errors, 
with  the true plant model, the limit value 
of the estimated plant model parameters  has the
following properties

1. the limit value  of the prediction error
estimate  depends on the noise level ,
even in the absence of measurement noise (see
Fig. 1,  and ), except for the
output error model structure, ,
identified in

1.a open loop without input measurement
noise (see Fig. 1, ), even if the
true noise model is not white, ,

1.b closed loop without input-output
measurement errors (see Fig. 1, 
and ), if the true noise model is
white, .

2. the limit value  of the sample maximum
likelihood estimate  is independent of the
noise level .

Proof: see Pintelon and Schoukens (2001b). G

Recall that the plant is by assumption linear for the
closed loop experiment and possibly nonlinear for the
open loop experiment. From Theorem 1 it follows
that sample maximum likelihood estimate 
converges to the solution of the noiseless problem
which is obtained by decreasing the noise level to
zero while maintaining the noise colouring (linear/
nonlinear plants), or by increasing the excitation level
to infinity while maintaining the colouring of its
power spectrum (linear plants only). This is not true
for the prediction error estimate : if the
identification experiment is repeated with a different
noise and/or excitation level then  converges to
other limit values . The reason for the different
behaviour of  and  is that the sample (co-
)variances (= non-parametric noise model) used in (7)
are estimated independently of the plant model, while
the estimated parametric noise model in (2) strongly
depends on the plant model errors. It can be
concluded that estimating (in time or frequency
domain) with non-parametric noise models, is less
sensitive to the experimental conditions (noise level,
excitation level) than with parametric noise models.

4. UNCERTAINTY IDENTIFIED PLANT MODEL

Define  as the minimizer of the expected value of
the cost function (10)

 with (14)

where we restrict the compact set  such that 
has a unique global minimum (see also the discussion
after eq. (13)). Under some suitable assumptions it

can be shown that  is asymptotically
( ) normally distributed with zero mean and
covariance matrix 

(15)

with  the derivative w.r.t.  (Pintelon and
Schoukens, 2001a). Note that the expectations in (15)
are taken w.r.t. the disturbing noise AND the excitation
signal. This should be kept in mind when studying the
uncertainty of  in the presence of modelling errors.
Using  (see Pintelon and
Schoukens, 2001a, Theorems 7.21 and 8.3), and
taking the limit of (15) for , gives

(16)

which is the classical result given in Ljung (1999). In
the following theorem (15) is analysed for “small”
noise errors  and “small” plant model errors

. To get tractable
qualitative expressions for  and , we replace in
(15) , , and  by respectively ,

, and , where  and
 are “small” real numbers.

Theorem 2 (asymptotic expression ): For small
noise levels,  with , and small
plant model errors,  with ,
the asymptotic covariance matrix  in (16) of the
estimated plant model parameters  is given by

(17)

for the prediction error method (2), and

(18)

for the sample maximum likelihood method (7).
Proof: see Pintelon and Schoukens (2001b). G

The result  for  and  can
be understood as follows. In the presence of plant
model errors, , the estimate  depends on
the periodogram  of the input signal (see
Ljung, 1999 and Pintelon and Schoukens, 2001a). For
finite  and random input signals,  is a
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random variable. Hence, for small noise levels
( ), the variability of  will be mainly due to
the variability of  over different realisations
of the input signal.

The different behaviour of  and  for
deterministic inputs and plant model errors can be
explained intuitively by the different stochastic
behaviour of the parametric noise model and the
sample (co-)variances. Indeed, for deterministic
inputs and plant model errors, the uncertainty of the
estimated parametric noise model  tends
to zero as  (for small noise levels the residuals

 in (2) are dominated by the plant model
errors), while the uncertainty of the scaled sample
(co-)variances ,  and

 is independent of the noise level . The
technical reason for the different behaviour of 
and  is that in eq. (15)

(19)

for deterministic inputs, while due to the uncertainty
of the sample (co-)variances

(20)

even for deterministic inputs (see Pintelon and
Schoukens 2001b).

Theorem 2 has also an impact on the ongoing
discussion (see, for example, Tjärnström and Ljung,
2000) whether a low order approximation of a
complex system should be obtained either via direct
identification of the low order model, or via a two step
procedure consisting of the estimation of a validated
complex model (removing in some optimal way the
disturbing noise) followed by a deterministic model
reduction step (for example, in weighted  or 
sense). Indeed, from Theorem 2 it follows that
asymptotically ( ) the uncertainty of the two
step procedure tends to zero (  for the first
step and the second step is deterministic), while that
of the direct approach is bounded below by

 (except for the prediction error method
with deterministic input where ). Hence,
the two step procedure should be preferred over the
direct approach if the model errors are larger than the
noise errors, except for the prediction error method
with deterministic input where Theorem 2 cannot
make any distinction.

5. SIMULATION RESULTS

As simulation example we take an open loop
experiment without input measurement noise (see
Fig. 1, ), a second order plant

(21)

and a second order disturbing noise process
 with

(22)

and  (see Fig. 2). The plant is excited
with periodic, normally  distributed noise
(period length of 150 samples).  consecutive
periods of the steady state response are used to
calculate the prediction error (PE) and the sample
maximum likelihood (SML) estimates. The PE
method (2) uses a Box-Jenkins model structure with a
second order noise model, while the SML method (7)
calculates the sample variance  from the

 consecutive periods. For each run of the
Monte Carlo simulation a new disturbing noise
sequence and a new excitation signal is generated.

Figures 3 and 4 show the results of a Monte-Carlo
simulation (1000 runs for each disturbing noise level)
for respectively a first and a second order plant model

(23)

These two figures illustrate nicely the influence of
model errors on the noise behaviour of the estimates.
In the presence of model errors (see Fig. 3) it follows
that (i)  is independent of the noise
level, while  strongly depends on the
noise level; and (ii) the sample standard deviations of

 and  converge to a non-
zero value as the noise level decreases to zero. Both
observations are in agreement with Theorems 1 and 2.
In the absence of model errors (see Fig. 4) it follows
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 Fig. 2. True plant (solid line) and noise
(dashed line) model.
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that (i)  and  are
independent of the noise level
( ); and (ii) the sample standard
deviations of  and 
converge to zero as the noise level decreases to zero.

6. CONCLUSION

Some qualitative analysis tools for studying the
influence of the disturbing noise level and the
modelling errors on the asymptotic value and the
uncertainty of the estimated plant model parameters
have been presented. The theory is illustrated on the
prediction error (PE) and the sample maximum
likelihood (SML) methods. The following
peculiarities result: in the presence of plant model
errors (i) the asymptotic value of the PE estimate
strongly depends on the noise/excitation level, while
that of the SML estimate is independent of the noise
level (linear/nonlinear plants) and the excitation level
(linear plants only); (ii) for random inputs the
uncertainty of the PE and SML estimates does not
decrease to zero for vanishing noise levels and is
bounded below by the model errors; (iii) for
deterministic inputs the uncertainty of the PE
decreases to zero for vanishing noise levels while that
of the SML estimates remains bounded below by the
modelling errors.
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normalised frequency for eight different values
of the noise level: , , , , ,
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σ 5= 2 0.5 0.1 0.01
0.001 0.0001

σ↓

σ↓
σ↓

L2

-20

-10

0

10

20

30

0 0.1 0.2 0.3 0.4 0.5

GSML (dB)

-20

-10

0

10

20

30

0 0.1 0.2 0.3 0.4 0.5

GBJ (dB)

-150

-100

-50

0

50

0 0.1 0.2 0.3 0.4 0.5

std(GSML) (dB)

-150

-100

-50

0

50

0 0.1 0.2 0.3 0.4 0.5

std(GBJ) (dB)

 Fig. 4. Simulation results for a second order plant
(eq.(20b): no model errors). Estimated plant and
its sample standard deviation as a function of
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