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Abstract: Based on Lyapunov-Krasovskii functional, this paper concerns an observer-
based stabilization problem for linear time-delay systems with delayed state and input. If
the time-delay constants are both available for the li.near time-delay system, an observer-
based controller, in which the influence of the time-delays is considered, is given. And
the design of the controller and observer satisfies the separation principle. If the time-
delay constants aren’t precisely known for the linear time-delay system, an observer-
based feedback controller with adaptation to delay parameters is first given. Then the
adaptive controllers are derived by Riccati matrix inequalities.  Copyright © 2002 IFAC
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1. INTRODUCTION

Time delays in state and control input are often
encountered in many industrial processes, such as
chemical processes, long transmission lines in
pneumatic, hydraulic, and rolling mill systems. The
presence of state delay and input delay may cause
instability or serious deterioration in the performance
of the control systems.

An easy way of dealing with linear time-delay
systems is to design a state-feedback controller based
on Lyapunov-Krasovskii functional. This has
attracted the attention of many researchers for the
past several decades [Hao & Myung, 1995a,b;
Niculescu, 1998; Jong, Eun & Hong, 1996]. Due to
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69604003, 69934010), Key Project (Under Grant
970211017) and Southeast University-Nanrui Fun of China.

limited output measurement, state-feedback control
laws cannot, in general, be realized. Therefore, the
problem of designing an observer-based feedback
controller for a linear plant to make the closed-loop
system stable has been discussed in many papers
during the two decades [Zhang, Cheng & Sun, 1998;
Zidong, Biao & Unbehauen, 2001; Su, Wang & Chu,
1998]. At present the observer design of linear time-
delay systems have mainly two methods. One is that
there is no delay information in observer [Zhang,
Cheng & Sun, 1998; Zidong, Biao & Unbehauen,
2001]. The design of this observer is quite simple,
but this observer can’t reflect the message of system
itself completely and the design of the controller and
observer doesn't satisfy the separation principle.
Another is that there is delay information in observer
[Su, Wang & Chu, 1998; Hao & Myung, 1996]. This
observer can completely reflect the message of
system itself and the design of the controller and
observer satisfies the separation principle, but its
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realization has some difficulty if the delay constant
can not be exactly known. In order to solve this
difficulty, an adaptive control to delay parameters is
presented firstly in this paper for linear time-delay
system if the upper bound of delay parameters are
known. Based on Riccati matrix inequalities, an
observer-based feedback controller has been given in
which the delay parameters of the observer are real-
time estimation of delays. Thus the design of
observer-based feedback controller doesn't need to
know the exact value of delay constants but only
need to know the upper bound of delays. It is shown
that an observer-based feedback controller can be
designed by a simple procedure as the solutions of
the Riccati matrix inequalities are obtained. So it is
very convenient to design the observer-based
feedback controller which include the delay
information.

2.  PROBLEM STATEMENT

Consider the following linear time-delay systems
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where nRtx ∈)(  is the state, mRtu ∈)(  is the control
input, pRty ∈)(  is the measured output, A , 1A , B ,

1B , C  are constant matrices with appropriate
dimensions. 0,0 ≥≥ dτ  are the delay constants,

},max{~ dττ =  and ∗≤ ττ *dd ≤ , ∗τ  and ∗d  are
given constants being the upper bound of τ  and d
respectively. φ  is a given continuous vector-valued
initial function over [ ]0,~τ−  of the system (1), it is to
say that [ ]0,~τφ −∈C .

In order to stabilize the system (1), the state-feedback
controllers have been given in general[1-4]. But in
practical, the states of the system (1) aren’t available
and the realization of these controllers has some
difficulties. One of the effective methods, which can
be used to solve this problem, is to design an
observer-based controller of the system (1). At
present, there are mainly two methods about the
observer-based controller design of the system (1).

One method is to design following observer-based
feedback controller which doesn’t consider the
influence of state-delay and input-delay in observer
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where nRtx ∈)(ˆ  is the observer state vector, and

[ ]0,~τψ −∈C  is the given continuous vector-valued

initial function over [ ]0,~τ−  of system (2), such that

the following closed-loop system is asymptotically
stable.
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where )(ˆ)()( txtxte −= . From (3) we can obviously

check that the design of this observer-based feedback
controller doesn’t satisfy the separation principle.
This brings about disadvantage when we design the
system controller and observer;

Another method is to design following observer-
based feedback controller which considers the
influence of the delays in observer
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such that the following closed-loop system is
asymptotically stable,
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From (5) we can obviously check that the design of
this observer-based feedback controller satisfies the
separation principle. This brings about advantage
when we design the system controller and observer.

However, the design of the controller (4) builds on
that the state-delay constant and the input-delay
constant are both exactly known. In general, the
time-delay constants can be hardly obtained in the
engineering systems. In order to solve this problem,
the design of observer-based feedback controller is
given for two aspects in this paper:

 If the delay constants τ  and d  are both exactly
available, an observer-based feedback controller
(4) will be designed such that the closed-loop
system (5) is asymptotically stable.

 If the delay constants τ  and d  aren't exactly
available but their upper bound ∗τ  and *d  are
available, the observer-based feedback controller
is designed as
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where )(ˆ tτ  and )(td  are the estimation value of τ
and d  satisfying 0)(ˆ,)(ˆ ≤≥ tt τττ  and dtd ≥)( ,

0)( ≤td , 0≥∀t  respectively, and the adaptive rule
about delay constants τ  and d  are given (see
Eq.(13), (14)) such that the following closed-loop
systems is asymptotically stable
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where F  and L  are gain matrices of the controller
and gain matrix of observer respectively, which is
taken to be determined.

3.  MAIN RESULTS

1  We assume that all the delay constants are
available exactly but the state of system (1) isn’t
exactly available. In this case we take Lyapunov-
Krasovskii functional of (5) as
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where 4321 ,,,,, SSSSPP oc  are symmetry positive-

definite matrices. Thus the derivative of ),(1 tt exV

along with closed-loop system (5) is
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where 5S  is a symmetry positive-definite matrix.
From the discussion above we can get following
conclusion.

Theorem 1: If there exist matrices F , L , symmetric
positive-definite matrices 54321 ,,,,,, SSSSSPP oc

satisfy the following Riccati matrix inequalities:
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then the closed-loop system (5) with observer-based
feedback controller (4) is asymptotically stable. At

this time, we can set that c
T PBF = , T

o CPL 1−= .

According to theorem 1, we can obtain the observer-
based feedback controller of the system (1). But if
the time-delay constants of the system (1) aren’t
exactly available, the realization of this controller has
some difficulty in the engineering systems. This
problem can be solved by an adaptive rule about
delay constant τ  and d  in the following part.

2  We suppose that the delay constants aren’t
exactly available. In this case, according to
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For the closed-loop system (11) we take Lyapunov-
Krasovskii functional as
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In the process above we make use of the condition of

0)(ˆ,0)(ˆ ≤≤ tdt
&&τ  and tdtdt ∀≥≥ ,)(ˆ,)(ˆ ττ . From

above, the adaptive rule about delay constants can be
taken as
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Since )(ˆ)()(ˆ)()( txCtytxCtCxtCe −=−=  is measurable,

and )(tz  can be also measured as well.

It is very clear that there exists constant 0>a  such
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same time, we can get that there exists 0>δ  such

that ],0[,)( δ∈∀≤≤ tMkte . In this case

0),(2 <tt exV& , ],0[ δ∈∀t  can be gotten by Riccati

matrix inequalities (9) and (10) and adaptive rules
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This is a contradiction. So 0,)( ≥∀≤ tMte . It is to

say that )(te  is bounded and its bound only has a

relation with initial function ϕ . Therefore, Constant

M  is existent.

From this we can get following conclusion.

Theorem 2 If there exist matrices F , L , symmetric

positive-define matrices 54321 ,,,,,, SSSSSPP oc

which satisfy the Riccati matrix inequalities (9) and

(10), then kC∈∀ϕ  there exists 0>M  such that

Mte ≤)( , and the system (1) can be stabilized by

observer-based feedback controller (6). In this case,

the adaptive control about delay constants can be

taken as (13) and (14). Where )2,1(0 => iiγ  are

constants to be decided such that the estimation )(ˆ tτ
of τ  satisfies 0,)(ˆ ≥∀≥ tt ττ  and the estimation

)(ˆ td  of d  satisfies dtd ≥)(ˆ , 0≥∀t .

Proof: We only need to prove the existence of

0>iγ )2,1( =i .

When closed-loop delay system (7) is asymptotically
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Because )(0)(ˆ,0)( ∞→→→ ttxtx , there exist

constant 0, >λM  such that teMtz λ−<)( , 0≥∀t ,

where M  is a constant which can be decided by

system parameters and has a relation with initial

function ψφ , . So
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then we have ττ ≥∞ . This shows that the positive

constant 01 >γ  of theorem 2 is existent and can be

estimated for a given system and an initial function

whose value is defined in a bounded set. We can

proof the existence of 02 >γ  in the same way.    

Remark 1  From theorem 1 and theorem 2 we can
see that the observer-based feedback controllers (4)
and (6) can be found if Riccati matrix inequalities (9)
and (10) holds.

Remark 2  If one of the state-delay and input-delay
can be exactly known but another isn’t available, we
can design an observer-based feedback controller
with adaptation to unknown delay parameter in the
same way.

Remark 3  Because the method of solving Riccati
matrix inequalities has much matured (9) and (10)
can be directly solved by toolbox in MATLAB
software.

4. CONCLUSIONS

In this note, we have discussed the observer-based
feedback controller for linear time-delay system with
adaptation to delay parameter. The design of this
controller satisfies the separation principle and the
time-delay constants needn't be known exactly. The
existence of this controller is equal to that of the
controller (4) in which the time-delay constant need
be known exactly. This brings us an advantage about
the design of system controller.
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